mirror of
https://github.com/RootKit-Org/AI-Aimbot.git
synced 2025-06-21 02:41:01 +08:00
Squashed commit of the following:
commit 10957c41487023dc0b996a100b9ca11024ac7ea6 Merge: 3e54f7b edce98a Author: Elijah Harmon <elijahharmon@gmail.com> Date: Thu Apr 14 16:45:07 2022 -0400 Merge pull request #7 from wrp5031/feature/wade Faster analysis and softening of the aiming jitters commit edce98a36982f83461c4569f4033401ea9a2c546 Merge: 05c9b17 3e54f7b Author: Elijah Harmon <elijahharmon@gmail.com> Date: Thu Apr 14 16:44:21 2022 -0400 Merge branch 'main' into feature/wade commit 05c9b17ca50cbd1bdfe5a8d5a283d1b2c32ae4d3 Author: wade <wpines@clarityinnovates.com> Date: Thu Apr 14 16:39:26 2022 -0400 Screen capture area is based around the center of the screen. Added headshot mode. If multiple people, there is logic to take the person that had a coordinate closest to the last recorded coordinate. commit 3e54f7ba975b4691fed2f9f61b163fed0f7d54df Author: Elijah Harmon <elijahharmon@gmail.com> Date: Sun Apr 10 00:02:39 2022 -0400 Create requirements.txt commit f1fa560e56ac6ed92e645b0b4c78dac08861459f Author: Elijah Harmon <elijahharmon@gmail.com> Date: Sat Apr 2 19:54:37 2022 -0400 Changed readme title commit a84ac9a238d47518bb45d64e27354f3fe65073ec Author: TazMatic <31835653+TazMatic@users.noreply.github.com> Date: Thu Mar 31 16:52:02 2022 -0400 Fix win32api and yaml package names commit 8e32d8bd309c9e6de926213499d766bdf3d10fc8 Author: Elijah Harmon <elijahharmon@gmail.com> Date: Tue Mar 15 16:54:36 2022 -0400 Update about pressing Q commit 3dc6835a9b33d7d27e9878b72550416b86fa2406 Author: Elijah Harmon <elijahharmon@gmail.com> Date: Tue Mar 15 16:48:20 2022 -0400 Update Readme commit ae24cc3f496e2a9c2810f2876c262c3bef46df09 Merge: 21d431d 42954e0 Author: Elijah Harmon <elijahharmon@gmail.com> Date: Tue Mar 15 16:42:44 2022 -0400 Merge pull request #3 from RootKit-Org/dev Now using YOLO
This commit is contained in:
parent
42954e02be
commit
bc2247dd72
15
README.md
15
README.md
@ -34,20 +34,9 @@ ANYTHING dealing with Machine Learning can be funky with your computer. So if yo
|
||||
|
||||
4. To install `PyTorch` go to this website, https://pytorch.org/get-started/locally/, and Select the stable build, your OS, Pip, Python and CUDA 11.3. Then select the text that is generated and run that command.
|
||||
|
||||
6. Copy and past the commands below into your terminal. This will install the Open Source packages needed to run the program.
|
||||
6. Copy and past the command below into your terminal. This will install the Open Source packages needed to run the program.
|
||||
```
|
||||
pip install PyAutoGUI
|
||||
pip install PyDirectInput
|
||||
pip install Pillow
|
||||
pip install opencv-python
|
||||
pip install mss
|
||||
pip install numpy
|
||||
pip install pandas
|
||||
pip install win32api
|
||||
pip install yaml
|
||||
pip install tqdm
|
||||
pip install matplotlib
|
||||
pip install seaborn
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Run
|
||||
|
60
main.py
60
main.py
@ -1,3 +1,4 @@
|
||||
from unittest import result
|
||||
import torch
|
||||
|
||||
import pyautogui
|
||||
@ -14,16 +15,20 @@ def main():
|
||||
# Window title to go after and the height of the screenshots
|
||||
videoGameWindowTitle = "Counter"
|
||||
|
||||
screenShotHeight = 500
|
||||
# Portion of screen to be captured (This forms a square/rectangle around the center of screen)
|
||||
screenShotHeight = 320
|
||||
screenShotWidth = 320
|
||||
|
||||
# How big the Autoaim box should be around the center of the screen
|
||||
aaDetectionBox = 300
|
||||
aaDetectionBox = 320
|
||||
|
||||
# Autoaim speed
|
||||
aaMovementAmp = 2
|
||||
aaMovementAmp = 1.1
|
||||
|
||||
# 0 will point center mass, 40 will point around the head in CSGO
|
||||
aaAimExtraVertical = 40
|
||||
# Person Class Confidence
|
||||
confidence = 0.5
|
||||
|
||||
headshot_mode = True
|
||||
|
||||
# Set to True if you want to get the visuals
|
||||
visuals = False
|
||||
@ -41,7 +46,10 @@ def main():
|
||||
videoGameWindow.activate()
|
||||
|
||||
# Setting up the screen shots
|
||||
sctArea = {"mon": 1, "top": videoGameWindow.top + round((videoGameWindow.height - screenShotHeight) / 2), "left": videoGameWindow.left, "width": videoGameWindow.width, "height": screenShotHeight}
|
||||
sctArea = {"mon": 1, "top": videoGameWindow.top + (videoGameWindow.height - screenShotHeight) // 2,
|
||||
"left": ((videoGameWindow.left + videoGameWindow.right) // 2) - (screenShotWidth // 2),
|
||||
"width": screenShotWidth,
|
||||
"height": screenShotHeight}
|
||||
|
||||
#! Uncomment if you want to view the entire screen
|
||||
# sctArea = {"mon": 1, "top": 0, "left": 0, "width": 1920, "height": 1080}
|
||||
@ -58,21 +66,24 @@ def main():
|
||||
sTime = time.time()
|
||||
|
||||
# Loading Yolo5 Small AI Model
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
||||
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, force_reload=True)
|
||||
model.classes = [0]
|
||||
|
||||
# Used for colors drawn on bounding boxes
|
||||
COLORS = np.random.uniform(0, 255, size=(1500, 3))
|
||||
|
||||
# Main loop Quit if Q is pressed
|
||||
last_mid_coord = None
|
||||
aimbot=False
|
||||
while win32api.GetAsyncKeyState(ord('Q')) == 0:
|
||||
# Getting screenshop, making into np.array and dropping alpha dimention.
|
||||
npImg = np.delete(np.array(sct.grab(sctArea)), 3, axis=2)
|
||||
|
||||
# Detecting all the objects
|
||||
results = model(npImg).pandas().xyxy[0]
|
||||
results = model(npImg, size=320).pandas().xyxy[0]
|
||||
|
||||
# Filtering out everything that isn't a person
|
||||
filteredResults = results[results['class']==0]
|
||||
filteredResults = results[(results['class']==0) & (results['confidence']>confidence)]
|
||||
|
||||
# Returns an array of trues/falses depending if it is in the center Autoaim box or not
|
||||
cResults = ((filteredResults["xmin"] > cWidth - aaDetectionBox) & (filteredResults["xmax"] < cWidth + aaDetectionBox)) & \
|
||||
@ -83,15 +94,36 @@ def main():
|
||||
|
||||
# If there are people in the center bounding box
|
||||
if len(targets) > 0:
|
||||
# All logic is just done on the random person that shows up first in the list
|
||||
targets['current_mid_x'] = (targets['xmax'] + targets['xmin']) // 2
|
||||
targets['current_mid_y'] = (targets['ymax'] + targets['ymin']) // 2
|
||||
# Get the last persons mid coordinate if it exists
|
||||
if last_mid_coord:
|
||||
targets['last_mid_x'] = last_mid_coord[0]
|
||||
targets['last_mid_y'] = last_mid_coord[1]
|
||||
# Take distance between current person mid coordinate and last person mid coordinate
|
||||
targets['dist'] = np.linalg.norm(targets.iloc[:, [7,8]].values - targets.iloc[:, [9,10]], axis=1)
|
||||
targets.sort_values(by="dist", ascending=False)
|
||||
|
||||
# Take the first person that shows up in the dataframe (Recall that we sort based on Euclidean distance)
|
||||
xMid = round((targets.iloc[0].xmax + targets.iloc[0].xmin) / 2)
|
||||
yMid = round((targets.iloc[0].ymax + targets.iloc[0].ymin) / 2)
|
||||
|
||||
mouseMove = [xMid - cWidth, yMid - (cHeight + aaAimExtraVertical)]
|
||||
box_height = targets.iloc[0].ymax - targets.iloc[0].ymin
|
||||
if headshot_mode:
|
||||
headshot_offset = box_height * 0.38
|
||||
else:
|
||||
headshot_offset = box_height * 0.2
|
||||
mouseMove = [xMid - cWidth, (yMid - headshot_offset) - cHeight]
|
||||
cv2.circle(npImg, (int(mouseMove[0] + xMid), int(mouseMove[1] + yMid - headshot_offset)), 3, (0, 0, 255))
|
||||
|
||||
# Moving the mouse
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, round(mouseMove[0] * aaMovementAmp), round(mouseMove[1] * aaMovementAmp), 0, 0)
|
||||
|
||||
if win32api.GetKeyState(0x14):
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, int(mouseMove[0] * aaMovementAmp), int(mouseMove[1] * aaMovementAmp), 0, 0)
|
||||
last_mid_coord = [xMid, yMid]
|
||||
|
||||
else:
|
||||
last_mid_coord = None
|
||||
|
||||
# See what the bot sees
|
||||
if visuals:
|
||||
# Loops over every item identified and draws a bounding box
|
||||
|
12
requirements.txt
Normal file
12
requirements.txt
Normal file
@ -0,0 +1,12 @@
|
||||
PyAutoGUI
|
||||
PyDirectInput
|
||||
Pillow
|
||||
opencv-python
|
||||
mss
|
||||
numpy
|
||||
pandas
|
||||
pywin32
|
||||
pyyaml
|
||||
tqdm
|
||||
matplotlib
|
||||
seaborn
|
Loading…
x
Reference in New Issue
Block a user