mirror of
https://github.com/RootKit-Org/AI-Aimbot.git
synced 2025-06-21 02:41:01 +08:00
Custom Script and model (#99)
* Added custom script * Add files via upload
This commit is contained in:
parent
bcbbdc38d0
commit
d052607c1b
22
customModels/yolov5n160/readme.md
Normal file
22
customModels/yolov5n160/readme.md
Normal file
@ -0,0 +1,22 @@
|
||||
# Explain your model
|
||||
|
||||
- Tell the community about your model.
|
||||
Default yolov5n model, modified so that it works on 160x160 images.
|
||||
|
||||
- What data was it trained on?
|
||||
General images
|
||||
|
||||
- How much data was it trained on?
|
||||
More info here:
|
||||
https://learnopencv.com/custom-object-detection-training-using-yolov5/#Training-the-Small-Model
|
||||
|
||||
- How many models do you have?
|
||||
One model
|
||||
|
||||
- Are they for pytorch, onnx, tensorrt, something else?
|
||||
onnx
|
||||
|
||||
- Any set up info
|
||||
You should replace this model with the one you are currently using.
|
||||
In addition, the size of the image captured and passed to the model should be changed from 320 to 160.
|
||||
Works best with the 'main_onnx_amd_perf.py' script
|
BIN
customModels/yolov5n160/yolov5n160half.onnx
Normal file
BIN
customModels/yolov5n160/yolov5n160half.onnx
Normal file
Binary file not shown.
317
customScripts/AimAssist/main_onnx_amd_perf.py
Normal file
317
customScripts/AimAssist/main_onnx_amd_perf.py
Normal file
@ -0,0 +1,317 @@
|
||||
import onnxruntime as ort
|
||||
import numpy as np
|
||||
import pygetwindow
|
||||
import time
|
||||
import win32api
|
||||
import win32con
|
||||
import pandas as pd
|
||||
from utils.general import (cv2, non_max_suppression, xyxy2xywh)
|
||||
import dxcam
|
||||
import torch
|
||||
|
||||
def main():
|
||||
# Load the model
|
||||
pathToModel = 'yolov5n160half.onnx'
|
||||
# The lower the threads the less cpu is used per core
|
||||
Threads = 1
|
||||
Providers = 'DmlExecutionProvider'
|
||||
|
||||
# Portion of screen to be captured (This forms a square/rectangle around the center of screen)
|
||||
screenShotHeight = 160
|
||||
screenShotWidth = 160
|
||||
|
||||
# For use in games that are 3rd person and character model interferes with the autoaim
|
||||
# EXAMPLE: Fortnite and New World
|
||||
aaRightShift = 0
|
||||
|
||||
### Offsets configurations ###
|
||||
# Modify these to adjust the offsets for your game, in case the cross-hair doesn't align as it should
|
||||
# Negative values are supported
|
||||
# test this with headshot_mode = False first
|
||||
offsetY = 0
|
||||
offsetX = 0
|
||||
offsetHeight = 0
|
||||
offsetWidth = 0
|
||||
|
||||
# An alternative to aaRightShift
|
||||
# Mark regions of the screen where your own player character is
|
||||
# This will often prevent the mouse from drifting to an edge of the screen
|
||||
# Format is (minX, minY, maxX, maxY) to form a rectangle
|
||||
# Remember, Y coordinates start at the top and move downward (higher Y values = lower on screen)
|
||||
skipRegions: list[tuple] = [
|
||||
(0, 0, 0, 0)
|
||||
]
|
||||
|
||||
# Max FPS - The maximum number of frames per second that the aimbot can run at
|
||||
# Ideally this should be the same as the FPS of the game, double that if you have a high-spec system
|
||||
# If the aimbot makes your game lag, lower this value
|
||||
Max_FPS = 150
|
||||
|
||||
# Autoaim mouse movement amplifier
|
||||
aaMovementAmp = .4
|
||||
|
||||
# Person Class Confidence
|
||||
# From testing. around 0.6 is the sweetspot for detecting humans. If game assets are complicated you may need to lower this
|
||||
confidence = 0.55
|
||||
|
||||
# What key to press to quit and shutdown the autoaim
|
||||
aaQuitKey = "P"
|
||||
|
||||
# If you want to main slightly upwards towards the head
|
||||
headshot_mode = True
|
||||
|
||||
# If headshot_mode = True, it handles how much higher the cross-hair should be in relation to the body
|
||||
headShotOffsetRatio = 0.38
|
||||
|
||||
# Displays the Corrections per second in the terminal
|
||||
# Great for debugging purposes, disable on low end systems
|
||||
cpsDisplay = False
|
||||
|
||||
# Set to True if you want to get the visuals
|
||||
# Great for debugging purposes, disable on low end systems
|
||||
visuals = False
|
||||
|
||||
# Selecting the correct game window
|
||||
try:
|
||||
videoGameWindows = pygetwindow.getAllWindows()
|
||||
print("=== All Windows ===")
|
||||
for index, window in enumerate(videoGameWindows):
|
||||
# only output the window if it has a meaningful title
|
||||
if window.title != "":
|
||||
print("[{}]: {}".format(index, window.title))
|
||||
# have the user select the window they want
|
||||
try:
|
||||
userInput = int(input(
|
||||
"Please enter the number corresponding to the window you'd like to select: "))
|
||||
except ValueError:
|
||||
print("You didn't enter a valid number. Please try again.")
|
||||
return
|
||||
# "save" that window as the chosen window for the rest of the script
|
||||
videoGameWindow = videoGameWindows[userInput]
|
||||
except Exception as e:
|
||||
print("Failed to select game window: {}".format(e))
|
||||
return
|
||||
|
||||
# Activate that Window
|
||||
activationRetries = 30
|
||||
activationSuccess = False
|
||||
while (activationRetries > 0):
|
||||
try:
|
||||
videoGameWindow.activate()
|
||||
activationSuccess = True
|
||||
break
|
||||
except pygetwindow.PyGetWindowException as we:
|
||||
print("Failed to activate game window: {}".format(str(we)))
|
||||
print("Trying again... (you should switch to the game now)")
|
||||
except Exception as e:
|
||||
print("Failed to activate game window: {}".format(str(e)))
|
||||
print("Read the relevant restrictions here: https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setforegroundwindow")
|
||||
activationSuccess = False
|
||||
activationRetries = 0
|
||||
break
|
||||
# wait a little bit before the next try
|
||||
time.sleep(3.0)
|
||||
activationRetries = activationRetries - 1
|
||||
# if we failed to activate the window then we'll be unable to send input to it
|
||||
# so just exit the script now
|
||||
if activationSuccess == False:
|
||||
return
|
||||
print("Successfully activated the game window...")
|
||||
|
||||
# Setting up the screen shots
|
||||
sctArea = {"mon": 1, "top": videoGameWindow.top + (videoGameWindow.height - screenShotHeight) // 2,
|
||||
"left": aaRightShift + ((videoGameWindow.left + videoGameWindow.right) // 2) - (screenShotWidth // 2),
|
||||
"width": screenShotWidth,
|
||||
"height": screenShotHeight}
|
||||
|
||||
# Starting screenshoting engine
|
||||
left = aaRightShift + \
|
||||
((videoGameWindow.left + videoGameWindow.right) // 2) - (screenShotWidth // 2)
|
||||
top = videoGameWindow.top + \
|
||||
(videoGameWindow.height - screenShotHeight) // 2
|
||||
right, bottom = left + screenShotWidth, top + screenShotHeight
|
||||
|
||||
region = (left, top, right, bottom)
|
||||
|
||||
camera = dxcam.create(device_idx=0, region=region, max_buffer_len=5120)
|
||||
if camera is None:
|
||||
print("""DXCamera failed to initialize. Some common causes are:
|
||||
1. You are on a laptop with both an integrated GPU and discrete GPU. Go into Windows Graphic Settings, select python.exe and set it to Power Saving Mode.
|
||||
If that doesn't work, then read this: https://github.com/SerpentAI/D3DShot/wiki/Installation-Note:-Laptops
|
||||
2. The game is an exclusive full screen game. Set it to windowed mode.""")
|
||||
return
|
||||
camera.start(target_fps=Max_FPS, video_mode=True)
|
||||
|
||||
# if visuals == True:
|
||||
# # Create and Position the Live Feed window to the left of the game window
|
||||
# cv2WindowName = 'Live Feed'
|
||||
# cv2.namedWindow(cv2WindowName)
|
||||
# visualsXPos = videoGameWindow.left - screenShotWidth - 5
|
||||
# cv2.moveWindow(cv2WindowName, (visualsXPos if visualsXPos >
|
||||
# 0 else 0), videoGameWindow.top)
|
||||
|
||||
# Calculating the center Autoaim box
|
||||
cWidth = sctArea["width"] / 2
|
||||
cHeight = sctArea["height"] / 2
|
||||
|
||||
# Used for forcing garbage collection
|
||||
count = 0
|
||||
sTime = time.time()
|
||||
|
||||
so = ort.SessionOptions()
|
||||
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
so.intra_op_num_threads = Threads
|
||||
so.enable_cpu_mem_arena = False
|
||||
so.enable_mem_pattern = False
|
||||
ort_sess = ort.InferenceSession(pathToModel, sess_options=so, providers=[Providers])
|
||||
|
||||
# Used for colors drawn on bounding boxes
|
||||
COLORS = np.random.uniform(0, 255, size=(1500, 3))
|
||||
|
||||
# Main loop Quit if Q is pressed
|
||||
last_mid_coord = None
|
||||
while win32api.GetAsyncKeyState(ord(aaQuitKey)) == 0:
|
||||
|
||||
# Getting Frame
|
||||
cap = camera.get_latest_frame()
|
||||
if cap is None:
|
||||
continue
|
||||
|
||||
# Normalizing Data
|
||||
npImg = np.array([cap]) / 255
|
||||
npImg = npImg.astype(np.half)
|
||||
npImg = np.moveaxis(npImg, 3, 1)
|
||||
|
||||
# Run ML Inference
|
||||
outputs = ort_sess.run(None, {'images': np.array(npImg)})
|
||||
im = torch.from_numpy(outputs[0]).to('cpu')
|
||||
pred = non_max_suppression(
|
||||
im, confidence, confidence, 0, False, max_det=10)
|
||||
|
||||
# Get targets from ML predictions
|
||||
targets = []
|
||||
for i, det in enumerate(pred):
|
||||
s = ""
|
||||
gn = torch.tensor(npImg.shape)[[0, 0, 0, 0]]
|
||||
if len(det):
|
||||
for c in det[:, -1].unique():
|
||||
n = (det[:, -1] == c).sum() # detections per class
|
||||
s += f"{n} {int(c)}, " # add to string
|
||||
|
||||
for *xyxy, conf, cls in reversed(det):
|
||||
# normalized xywh
|
||||
detTensorScreenCoords = (xyxy2xywh(torch.tensor(xyxy).view(
|
||||
1, 4)) / gn).view(-1)
|
||||
detScreenCoords = (
|
||||
detTensorScreenCoords.tolist() + [float(conf)])
|
||||
isSkipped = False
|
||||
for skipRegion in skipRegions:
|
||||
# TODO check logic. there are some rare edge cases.
|
||||
# if min and max are both within the min and max of the other, then we are fully within it
|
||||
detectionWithinSkipRegion = ((xyxy[0] >= skipRegion[0] and xyxy[2] <= skipRegion[2])
|
||||
and (xyxy[1] >= skipRegion[1] and xyxy[3] <= skipRegion[3]))
|
||||
# if above top edge, to the right of right edge, below bottom edge, or left of left edge, then there can be no intersection
|
||||
detectionIntersectsSkipRegion = not (
|
||||
xyxy[0] > skipRegion[2] or xyxy[2] < skipRegion[0] or xyxy[1] > skipRegion[3] or xyxy[1] < skipRegion[3])
|
||||
if detectionWithinSkipRegion or detectionIntersectsSkipRegion:
|
||||
isSkipped = True
|
||||
break
|
||||
if isSkipped == False:
|
||||
targets.append(detScreenCoords)
|
||||
|
||||
targets = pd.DataFrame(
|
||||
targets, columns=['current_mid_x', 'current_mid_y', 'width', "height", "confidence"])
|
||||
|
||||
# If there are people in the center bounding box
|
||||
if len(targets) > 0:
|
||||
# Get the last persons mid coordinate if it exists
|
||||
if last_mid_coord:
|
||||
targets['last_mid_x'] = last_mid_coord[0]
|
||||
targets['last_mid_y'] = last_mid_coord[1]
|
||||
# Take distance between current person mid coordinate and last person mid coordinate
|
||||
targets['dist'] = np.linalg.norm(
|
||||
targets.iloc[:, [0, 1]].values - targets.iloc[:, [4, 5]], axis=1)
|
||||
# This ensures the person closest to the crosshairs is the one that's targeted
|
||||
targets.sort_values(by="dist", ascending=False)
|
||||
|
||||
# Take the first person that shows up in the dataframe (Recall that we sort based on Euclidean distance)
|
||||
xMid = targets.iloc[0].current_mid_x + aaRightShift
|
||||
yMid = targets.iloc[0].current_mid_y
|
||||
|
||||
box_height = targets.iloc[0].height
|
||||
if headshot_mode:
|
||||
headshot_offset = box_height * headShotOffsetRatio
|
||||
else:
|
||||
headshot_offset = box_height * 0.2
|
||||
|
||||
# Offsets handling
|
||||
xMid = xMid + offsetX
|
||||
yMid = yMid + offsetY
|
||||
cWidth = cWidth + offsetWidth
|
||||
cHeight = cHeight + offsetHeight
|
||||
|
||||
mouseMove = [xMid - cWidth, (yMid - headshot_offset) - cHeight]
|
||||
|
||||
# Moving the mouse
|
||||
if win32api.GetKeyState(0x14):
|
||||
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, int(
|
||||
mouseMove[0] * aaMovementAmp), int(mouseMove[1] * aaMovementAmp), 0, 0)
|
||||
last_mid_coord = [xMid, yMid]
|
||||
|
||||
else:
|
||||
last_mid_coord = None
|
||||
|
||||
# See what the bot sees
|
||||
# if visuals:
|
||||
# # Loops over every item identified and draws a bounding box
|
||||
# for i in range(0, len(targets)):
|
||||
# halfW = round(targets["width"][i] / 2)
|
||||
# halfH = round(targets["height"][i] / 2)
|
||||
# midX = targets['current_mid_x'][i]
|
||||
# midY = targets['current_mid_y'][i]
|
||||
# (startX, startY, endX, endY) = int(midX + halfW), int(midY +
|
||||
# halfH), int(midX - halfW), int(midY - halfH)
|
||||
|
||||
# idx = 0
|
||||
# # draw the bounding box and label on the frame
|
||||
# label = "{}: {:.2f}%".format(
|
||||
# "Human", targets["confidence"][i] * 100)
|
||||
# cv2.rectangle(cap, (startX, startY), (endX, endY),
|
||||
# COLORS[idx], 2)
|
||||
# y = startY - 15 if startY - 15 > 15 else startY + 15
|
||||
# cv2.putText(cap, label, (startX, y),
|
||||
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
||||
# for skipRegion in skipRegions:
|
||||
# cv2.rectangle(cap, (skipRegion[0], skipRegion[1]), (skipRegion[2],
|
||||
# skipRegion[3]), (0, 0, 0), 2)
|
||||
|
||||
# Forced garbage cleanup every second
|
||||
# count += 1
|
||||
# if (time.time() - sTime) > 1:
|
||||
# if cpsDisplay:
|
||||
# print("CPS: {}".format(count))
|
||||
# count = 0
|
||||
# sTime = time.time()
|
||||
|
||||
# Uncomment if you keep running into memory issues
|
||||
# gc.collect(generation=0)
|
||||
|
||||
# See visually what the Aimbot sees
|
||||
# if visuals:
|
||||
# cv2.imshow(cv2WindowName, cap)
|
||||
# if (cv2.waitKey(1) & 0xFF) == ord('q'):
|
||||
# cv2.destroyAllWindows()
|
||||
# exit()
|
||||
camera.stop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except Exception as e:
|
||||
import traceback
|
||||
print("Please read the below message and think about how it could be solved before posting it on discord.")
|
||||
traceback.print_exception(e)
|
||||
print(str(e))
|
||||
print("Please read the above message and think about how it could be solved before posting it on discord.")
|
||||
cv2.destroyAllWindows()
|
15
customScripts/AimAssist/readme.md
Normal file
15
customScripts/AimAssist/readme.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Performance optimizations
|
||||
|
||||
This version aimes to achieve the best performance possible on AMD hardware.
|
||||
To achieve this, the script acts more as an aim assist insted of a full fledged aimbot.
|
||||
The user will still need to do most on the aim
|
||||
|
||||
Changes that have been made:
|
||||
- general clean up of the codebase, added some comments, removed duplicate imports
|
||||
- added some variables to quickly adjust the behavior of the script: offsets for mouse movement, headshot offset, Max_FPS, model selection etc...
|
||||
- removed garbage collection and (I have 32gb of ram and I have never run into memory issues)
|
||||
- added 'so.enable_cpu_mem_arena = True' this should improve latencies
|
||||
- added 'so.intra_op_num_threads', the lower the threads the less cpu is used per core
|
||||
|
||||
## More info
|
||||
Contact Parideboy
|
Loading…
x
Reference in New Issue
Block a user