import torch import numpy as np import cv2 import time import win32api import win32con import pandas as pd import gc from utils.general import (cv2, non_max_suppression, xyxy2xywh) # Could be do with # from config import * # But we are writing it out for clarity for new devs from config import aaMovementAmp, useMask, maskWidth, maskHeight, aaQuitKey, screenShotHeight, confidence, headshot_mode, cpsDisplay, visuals, centerOfScreen import gameSelection def main(): # External Function for running the game selection menu (gameSelection.py) camera, cWidth, cHeight = gameSelection.gameSelection() # Used for forcing garbage collection count = 0 sTime = time.time() # Loading Yolo5 Small AI Model, for better results use yolov5m or yolov5l model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, force_reload=True) stride, names, pt = model.stride, model.names, model.pt if torch.cuda.is_available(): model.half() # Used for colors drawn on bounding boxes COLORS = np.random.uniform(0, 255, size=(1500, 3)) # Main loop Quit if Q is pressed last_mid_coord = None with torch.no_grad(): while win32api.GetAsyncKeyState(ord(aaQuitKey)) == 0: # Getting Frame npImg = np.array(camera.get_latest_frame()) from config import maskSide # "temporary" workaround for bad syntax if useMask: maskSide = maskSide.lower() if maskSide == "right": npImg[-maskHeight:, -maskWidth:, :] = 0 elif maskSide == "left": npImg[-maskHeight:, :maskWidth, :] = 0 else: raise Exception('ERROR: Invalid maskSide! Please use "left" or "right"') # Normalizing Data im = torch.from_numpy(npImg) if im.shape[2] == 4: # If the image has an alpha channel, remove it im = im[:, :, :3,] im = torch.movedim(im, 2, 0) if torch.cuda.is_available(): im = im.half() im /= 255 if len(im.shape) == 3: im = im[None] # Detecting all the objects results = model(im, size=screenShotHeight) # Suppressing results that dont meet thresholds pred = non_max_suppression( results, confidence, confidence, 0, False, max_det=1000) # Converting output to usable cords targets = [] for i, det in enumerate(pred): s = "" gn = torch.tensor(im.shape)[[0, 0, 0, 0]] if len(det): for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}, " # add to string for *xyxy, conf, cls in reversed(det): targets.append((xyxy2xywh(torch.tensor(xyxy).view( 1, 4)) / gn).view(-1).tolist() + [float(conf)]) # normalized xywh targets = pd.DataFrame( targets, columns=['current_mid_x', 'current_mid_y', 'width', "height", "confidence"]) center_screen = [cWidth, cHeight] # If there are people in the center bounding box if len(targets) > 0: if (centerOfScreen): # Compute the distance from the center targets["dist_from_center"] = np.sqrt((targets.current_mid_x - center_screen[0])**2 + (targets.current_mid_y - center_screen[1])**2) # Sort the data frame by distance from center targets = targets.sort_values("dist_from_center") # Get the last persons mid coordinate if it exists if last_mid_coord: targets['last_mid_x'] = last_mid_coord[0] targets['last_mid_y'] = last_mid_coord[1] # Take distance between current person mid coordinate and last person mid coordinate targets['dist'] = np.linalg.norm( targets.iloc[:, [0, 1]].values - targets.iloc[:, [4, 5]], axis=1) targets.sort_values(by="dist", ascending=False) # Take the first person that shows up in the dataframe (Recall that we sort based on Euclidean distance) xMid = targets.iloc[0].current_mid_x yMid = targets.iloc[0].current_mid_y box_height = targets.iloc[0].height if headshot_mode: headshot_offset = box_height * 0.38 else: headshot_offset = box_height * 0.2 mouseMove = [xMid - cWidth, (yMid - headshot_offset) - cHeight] # Moving the mouse if win32api.GetKeyState(0x14): win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, int( mouseMove[0] * aaMovementAmp), int(mouseMove[1] * aaMovementAmp), 0, 0) last_mid_coord = [xMid, yMid] else: last_mid_coord = None # See what the bot sees if visuals: # Loops over every item identified and draws a bounding box for i in range(0, len(targets)): halfW = round(targets["width"][i] / 2) halfH = round(targets["height"][i] / 2) midX = targets['current_mid_x'][i] midY = targets['current_mid_y'][i] (startX, startY, endX, endY) = int( midX + halfW), int(midY + halfH), int(midX - halfW), int(midY - halfH) idx = 0 # draw the bounding box and label on the frame label = "{}: {:.2f}%".format( "Human", targets["confidence"][i] * 100) cv2.rectangle(npImg, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(npImg, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) # Forced garbage cleanup every second count += 1 if (time.time() - sTime) > 1: if cpsDisplay: print("CPS: {}".format(count)) count = 0 sTime = time.time() # Uncomment if you keep running into memory issues # gc.collect(generation=0) # See visually what the Aimbot sees if visuals: cv2.imshow('Live Feed', npImg) if (cv2.waitKey(1) & 0xFF) == ord('q'): exit() camera.stop() if __name__ == "__main__": try: main() except Exception as e: import traceback traceback.print_exception(e) print("ERROR: " + str(e)) print("Ask @Wonder for help in our Discord in the #ai-aimbot channel ONLY: https://discord.gg/rootkitorg")