mirror of
https://github.com/RootKit-Org/AI-Aimbot.git
synced 2025-06-21 02:41:01 +08:00
230 lines
8.6 KiB
Python
230 lines
8.6 KiB
Python
from unittest import result
|
|
import torch
|
|
import pyautogui
|
|
import gc
|
|
import numpy as np
|
|
import cv2
|
|
import time
|
|
import win32api
|
|
import win32con
|
|
import pandas as pd
|
|
from utils.general import (cv2, non_max_suppression, xyxy2xywh)
|
|
import dxcam
|
|
|
|
|
|
def main():
|
|
# Window title of the game, don't need the entire name
|
|
videoGameWindowTitle = "Counter"
|
|
|
|
# Portion of screen to be captured (This forms a square/rectangle around the center of screen)
|
|
screenShotHeight = 320
|
|
screenShotWidth = 320
|
|
|
|
# For use in games that are 3rd person and character model interferes with the autoaim
|
|
# EXAMPLE: Fortnite and New World
|
|
aaRightShift = 0
|
|
|
|
# Autoaim mouse movement amplifier
|
|
aaMovementAmp = .8
|
|
|
|
# Person Class Confidence
|
|
confidence = 0.5
|
|
|
|
# What key to press to quit and shutdown the autoaim
|
|
aaQuitKey = "Q"
|
|
|
|
# If you want to main slightly upwards towards the head
|
|
headshot_mode = True
|
|
|
|
# Displays the Corrections per second in the terminal
|
|
cpsDisplay = True
|
|
|
|
# Set to True if you want to get the visuals
|
|
visuals = False
|
|
|
|
# Selecting the correct game window
|
|
try:
|
|
videoGameWindows = pyautogui.getWindowsWithTitle(videoGameWindowTitle)
|
|
videoGameWindow = videoGameWindows[0]
|
|
except:
|
|
print("The game window you are trying to select doesn't exist.")
|
|
print("Check variable videoGameWindowTitle (typically on line 17)")
|
|
exit()
|
|
|
|
# Select that Window
|
|
try:
|
|
videoGameWindow.activate()
|
|
except Exception as e:
|
|
print("Failed to activate game window: {}".format(str(e)))
|
|
print("Read the relevant restrictions here: https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setforegroundwindow")
|
|
return
|
|
|
|
# Setting up the screen shots
|
|
sctArea = {"mon": 1, "top": videoGameWindow.top + (videoGameWindow.height - screenShotHeight) // 2,
|
|
"left": aaRightShift + ((videoGameWindow.left + videoGameWindow.right) // 2) - (screenShotWidth // 2),
|
|
"width": screenShotWidth,
|
|
"height": screenShotHeight}
|
|
|
|
#! Uncomment if you want to view the entire screen
|
|
# sctArea = {"mon": 1, "top": 0, "left": 0, "width": 1920, "height": 1080}
|
|
|
|
# Starting screenshoting engine
|
|
left = aaRightShift + \
|
|
((videoGameWindow.left + videoGameWindow.right) // 2) - (screenShotWidth // 2)
|
|
top = videoGameWindow.top + \
|
|
(videoGameWindow.height - screenShotHeight) // 2
|
|
right, bottom = left + screenShotWidth, top + screenShotHeight
|
|
|
|
region = (left, top, right, bottom)
|
|
|
|
camera = dxcam.create(region=region)
|
|
if camera is None:
|
|
print("""DXCamera failed to initialize. Some common causes are:
|
|
1. You are on a laptop with both an integrated GPU and discrete GPU. Go into Windows Graphic Settings, select python.exe and set it to Power Saving Mode.
|
|
If that doesn't work, then read this: https://github.com/SerpentAI/D3DShot/wiki/Installation-Note:-Laptops
|
|
2. The game is an exclusive full screen game. Set it to windowed mode.""")
|
|
return
|
|
camera.start(target_fps=120, video_mode=True)
|
|
|
|
# Calculating the center Autoaim box
|
|
cWidth = sctArea["width"] / 2
|
|
cHeight = sctArea["height"] / 2
|
|
|
|
# Used for forcing garbage collection
|
|
count = 0
|
|
sTime = time.time()
|
|
|
|
# Loading Yolo5 Small AI Model
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s',
|
|
pretrained=True, force_reload=True)
|
|
stride, names, pt = model.stride, model.names, model.pt
|
|
|
|
model.half()
|
|
|
|
# Used for colors drawn on bounding boxes
|
|
COLORS = np.random.uniform(0, 255, size=(1500, 3))
|
|
|
|
# Main loop Quit if Q is pressed
|
|
last_mid_coord = None
|
|
with torch.no_grad():
|
|
while win32api.GetAsyncKeyState(ord(aaQuitKey)) == 0:
|
|
|
|
# Getting Frame
|
|
npImg = np.array(camera.get_latest_frame())
|
|
|
|
# Normalizing Data
|
|
im = torch.from_numpy(npImg).to('cuda')
|
|
im = torch.movedim(im, 2, 0)
|
|
im = im.half()
|
|
im /= 255
|
|
if len(im.shape) == 3:
|
|
im = im[None]
|
|
|
|
# Detecting all the objects
|
|
results = model(im, size=screenShotHeight)
|
|
|
|
# Suppressing results that dont meet thresholds
|
|
pred = non_max_suppression(
|
|
results, 0.25, 0.25, 0, False, max_det=1000)
|
|
|
|
# Converting output to usable cords
|
|
targets = []
|
|
for i, det in enumerate(pred):
|
|
s = ""
|
|
gn = torch.tensor(im.shape)[[0, 0, 0, 0]]
|
|
if len(det):
|
|
for c in det[:, -1].unique():
|
|
n = (det[:, -1] == c).sum() # detections per class
|
|
s += f"{n} {names[int(c)]}, " # add to string
|
|
|
|
for *xyxy, conf, cls in reversed(det):
|
|
targets.append((xyxy2xywh(torch.tensor(xyxy).view(
|
|
1, 4)) / gn).view(-1).tolist()) # normalized xywh
|
|
|
|
targets = pd.DataFrame(
|
|
targets, columns=['current_mid_x', 'current_mid_y', 'width', "height"])
|
|
|
|
# If there are people in the center bounding box
|
|
if len(targets) > 0:
|
|
# Get the last persons mid coordinate if it exists
|
|
if last_mid_coord:
|
|
targets['last_mid_x'] = last_mid_coord[0]
|
|
targets['last_mid_y'] = last_mid_coord[1]
|
|
# Take distance between current person mid coordinate and last person mid coordinate
|
|
targets['dist'] = np.linalg.norm(
|
|
targets.iloc[:, [0, 1]].values - targets.iloc[:, [4, 5]], axis=1)
|
|
targets.sort_values(by="dist", ascending=False)
|
|
|
|
# Take the first person that shows up in the dataframe (Recall that we sort based on Euclidean distance)
|
|
xMid = targets.iloc[0].current_mid_x + aaRightShift
|
|
yMid = targets.iloc[0].current_mid_y
|
|
|
|
box_height = targets.iloc[0].height
|
|
if headshot_mode:
|
|
headshot_offset = box_height * 0.38
|
|
else:
|
|
headshot_offset = box_height * 0.2
|
|
|
|
mouseMove = [xMid - cWidth, (yMid - headshot_offset) - cHeight]
|
|
|
|
# Moving the mouse
|
|
if win32api.GetKeyState(0x14):
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, int(
|
|
mouseMove[0] * aaMovementAmp), int(mouseMove[1] * aaMovementAmp), 0, 0)
|
|
last_mid_coord = [xMid, yMid]
|
|
|
|
else:
|
|
last_mid_coord = None
|
|
|
|
# See what the bot sees
|
|
if visuals:
|
|
# Loops over every item identified and draws a bounding box
|
|
for i in range(0, len(targets)):
|
|
halfW = round(targets["width"][i] / 2)
|
|
halfH = round(targets["height"][i] / 2)
|
|
midX = targets['current_mid_x'][i]
|
|
midY = targets['current_mid_y'][i]
|
|
(startX, startY, endX, endY) = int(
|
|
midX + halfW), int(midY + halfH), int(midX - halfW), int(midY - halfH)
|
|
|
|
confidence = .5
|
|
|
|
idx = 0
|
|
|
|
# draw the bounding box and label on the frame
|
|
label = "{}: {:.2f}%".format("Human", confidence * 100)
|
|
cv2.rectangle(npImg, (startX, startY), (endX, endY),
|
|
COLORS[idx], 2)
|
|
y = startY - 15 if startY - 15 > 15 else startY + 15
|
|
cv2.putText(npImg, label, (startX, y),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
|
|
|
# Forced garbage cleanup every second
|
|
count += 1
|
|
if (time.time() - sTime) > 1:
|
|
if cpsDisplay:
|
|
print("CPS: {}".format(count))
|
|
count = 0
|
|
sTime = time.time()
|
|
|
|
# Uncomment if you keep running into memory issues
|
|
# gc.collect(generation=0)
|
|
|
|
# See visually what the Aimbot sees
|
|
if visuals:
|
|
cv2.imshow('Live Feed', npImg)
|
|
if (cv2.waitKey(1) & 0xFF) == ord('q'):
|
|
exit()
|
|
camera.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
main()
|
|
except Exception as e:
|
|
import traceback
|
|
print("Please read the below message and think about how it could be solved before posting it on discord.")
|
|
traceback.print_exception(e)
|
|
print(str(e))
|
|
print("Please read the above message and think about how it could be solved before posting it on discord.")
|