Merge branch 'refs/heads/main' into mcp
This commit is contained in:
commit
167b1acd5c
@ -25,7 +25,7 @@ class LLMSettings(BaseModel):
|
|||||||
description="Maximum input tokens to use across all requests (None for unlimited)",
|
description="Maximum input tokens to use across all requests (None for unlimited)",
|
||||||
)
|
)
|
||||||
temperature: float = Field(1.0, description="Sampling temperature")
|
temperature: float = Field(1.0, description="Sampling temperature")
|
||||||
api_type: str = Field(..., description="AzureOpenai or Openai")
|
api_type: str = Field(..., description="Azure, Openai, or Ollama")
|
||||||
api_version: str = Field(..., description="Azure Openai version if AzureOpenai")
|
api_version: str = Field(..., description="Azure Openai version if AzureOpenai")
|
||||||
|
|
||||||
|
|
||||||
|
81
app/llm.py
81
app/llm.py
@ -30,6 +30,14 @@ from app.schema import (
|
|||||||
|
|
||||||
|
|
||||||
REASONING_MODELS = ["o1", "o3-mini"]
|
REASONING_MODELS = ["o1", "o3-mini"]
|
||||||
|
MULTIMODAL_MODELS = [
|
||||||
|
"gpt-4-vision-preview",
|
||||||
|
"gpt-4o",
|
||||||
|
"gpt-4o-mini",
|
||||||
|
"claude-3-opus-20240229",
|
||||||
|
"claude-3-sonnet-20240229",
|
||||||
|
"claude-3-haiku-20240307",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class TokenCounter:
|
class TokenCounter:
|
||||||
@ -259,12 +267,15 @@ class LLM:
|
|||||||
return "Token limit exceeded"
|
return "Token limit exceeded"
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def format_messages(messages: List[Union[dict, Message]]) -> List[dict]:
|
def format_messages(
|
||||||
|
messages: List[Union[dict, Message]], supports_images: bool = False
|
||||||
|
) -> List[dict]:
|
||||||
"""
|
"""
|
||||||
Format messages for LLM by converting them to OpenAI message format.
|
Format messages for LLM by converting them to OpenAI message format.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
messages: List of messages that can be either dict or Message objects
|
messages: List of messages that can be either dict or Message objects
|
||||||
|
supports_images: Flag indicating if the target model supports image inputs
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[dict]: List of formatted messages in OpenAI format
|
List[dict]: List of formatted messages in OpenAI format
|
||||||
@ -288,20 +299,20 @@ class LLM:
|
|||||||
if isinstance(message, Message):
|
if isinstance(message, Message):
|
||||||
message = message.to_dict()
|
message = message.to_dict()
|
||||||
|
|
||||||
if not isinstance(message, dict):
|
if isinstance(message, dict):
|
||||||
raise TypeError(f"Unsupported message type: {type(message)}")
|
# If message is a dict, ensure it has required fields
|
||||||
|
|
||||||
# Validate required fields
|
|
||||||
if "role" not in message:
|
if "role" not in message:
|
||||||
raise ValueError("Message dict must contain 'role' field")
|
raise ValueError("Message dict must contain 'role' field")
|
||||||
|
|
||||||
# Process base64 images if present
|
# Process base64 images if present and model supports images
|
||||||
if message.get("base64_image"):
|
if supports_images and message.get("base64_image"):
|
||||||
# Initialize or convert content to appropriate format
|
# Initialize or convert content to appropriate format
|
||||||
if not message.get("content"):
|
if not message.get("content"):
|
||||||
message["content"] = []
|
message["content"] = []
|
||||||
elif isinstance(message["content"], str):
|
elif isinstance(message["content"], str):
|
||||||
message["content"] = [{"type": "text", "text": message["content"]}]
|
message["content"] = [
|
||||||
|
{"type": "text", "text": message["content"]}
|
||||||
|
]
|
||||||
elif isinstance(message["content"], list):
|
elif isinstance(message["content"], list):
|
||||||
# Convert string items to proper text objects
|
# Convert string items to proper text objects
|
||||||
message["content"] = [
|
message["content"] = [
|
||||||
@ -325,17 +336,21 @@ class LLM:
|
|||||||
|
|
||||||
# Remove the base64_image field
|
# Remove the base64_image field
|
||||||
del message["base64_image"]
|
del message["base64_image"]
|
||||||
|
# If model doesn't support images but message has base64_image, handle gracefully
|
||||||
|
elif not supports_images and message.get("base64_image"):
|
||||||
|
# Just remove the base64_image field and keep the text content
|
||||||
|
del message["base64_image"]
|
||||||
|
|
||||||
# Only include messages with content or tool_calls
|
|
||||||
if "content" in message or "tool_calls" in message:
|
if "content" in message or "tool_calls" in message:
|
||||||
formatted_messages.append(message)
|
formatted_messages.append(message)
|
||||||
|
# else: do not include the message
|
||||||
|
else:
|
||||||
|
raise TypeError(f"Unsupported message type: {type(message)}")
|
||||||
|
|
||||||
# Validate all roles
|
# Validate all messages have required fields
|
||||||
invalid_roles = [
|
for msg in formatted_messages:
|
||||||
msg for msg in formatted_messages if msg["role"] not in ROLE_VALUES
|
if msg["role"] not in ROLE_VALUES:
|
||||||
]
|
raise ValueError(f"Invalid role: {msg['role']}")
|
||||||
if invalid_roles:
|
|
||||||
raise ValueError(f"Invalid role: {invalid_roles[0]['role']}")
|
|
||||||
|
|
||||||
return formatted_messages
|
return formatted_messages
|
||||||
|
|
||||||
@ -372,12 +387,15 @@ class LLM:
|
|||||||
Exception: For unexpected errors
|
Exception: For unexpected errors
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Format system and user messages
|
# Check if the model supports images
|
||||||
|
supports_images = self.model in MULTIMODAL_MODELS
|
||||||
|
|
||||||
|
# Format system and user messages with image support check
|
||||||
if system_msgs:
|
if system_msgs:
|
||||||
system_msgs = self.format_messages(system_msgs)
|
system_msgs = self.format_messages(system_msgs, supports_images)
|
||||||
messages = system_msgs + self.format_messages(messages)
|
messages = system_msgs + self.format_messages(messages, supports_images)
|
||||||
else:
|
else:
|
||||||
messages = self.format_messages(messages)
|
messages = self.format_messages(messages, supports_images)
|
||||||
|
|
||||||
# Calculate input token count
|
# Calculate input token count
|
||||||
input_tokens = self.count_message_tokens(messages)
|
input_tokens = self.count_message_tokens(messages)
|
||||||
@ -499,8 +517,15 @@ class LLM:
|
|||||||
Exception: For unexpected errors
|
Exception: For unexpected errors
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Format messages
|
# For ask_with_images, we always set supports_images to True because
|
||||||
formatted_messages = self.format_messages(messages)
|
# this method should only be called with models that support images
|
||||||
|
if self.model not in MULTIMODAL_MODELS:
|
||||||
|
raise ValueError(
|
||||||
|
f"Model {self.model} does not support images. Use a model from {MULTIMODAL_MODELS}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Format messages with image support
|
||||||
|
formatted_messages = self.format_messages(messages, supports_images=True)
|
||||||
|
|
||||||
# Ensure the last message is from the user to attach images
|
# Ensure the last message is from the user to attach images
|
||||||
if not formatted_messages or formatted_messages[-1]["role"] != "user":
|
if not formatted_messages or formatted_messages[-1]["role"] != "user":
|
||||||
@ -539,7 +564,10 @@ class LLM:
|
|||||||
|
|
||||||
# Add system messages if provided
|
# Add system messages if provided
|
||||||
if system_msgs:
|
if system_msgs:
|
||||||
all_messages = self.format_messages(system_msgs) + formatted_messages
|
all_messages = (
|
||||||
|
self.format_messages(system_msgs, supports_images=True)
|
||||||
|
+ formatted_messages
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
all_messages = formatted_messages
|
all_messages = formatted_messages
|
||||||
|
|
||||||
@ -653,12 +681,15 @@ class LLM:
|
|||||||
if tool_choice not in TOOL_CHOICE_VALUES:
|
if tool_choice not in TOOL_CHOICE_VALUES:
|
||||||
raise ValueError(f"Invalid tool_choice: {tool_choice}")
|
raise ValueError(f"Invalid tool_choice: {tool_choice}")
|
||||||
|
|
||||||
|
# Check if the model supports images
|
||||||
|
supports_images = self.model in MULTIMODAL_MODELS
|
||||||
|
|
||||||
# Format messages
|
# Format messages
|
||||||
if system_msgs:
|
if system_msgs:
|
||||||
system_msgs = self.format_messages(system_msgs)
|
system_msgs = self.format_messages(system_msgs, supports_images)
|
||||||
messages = system_msgs + self.format_messages(messages)
|
messages = system_msgs + self.format_messages(messages, supports_images)
|
||||||
else:
|
else:
|
||||||
messages = self.format_messages(messages)
|
messages = self.format_messages(messages, supports_images)
|
||||||
|
|
||||||
# Calculate input token count
|
# Calculate input token count
|
||||||
input_tokens = self.count_message_tokens(messages)
|
input_tokens = self.count_message_tokens(messages)
|
||||||
|
@ -418,17 +418,7 @@ class BrowserUseTool(BaseTool, Generic[Context]):
|
|||||||
|
|
||||||
# Create prompt for LLM
|
# Create prompt for LLM
|
||||||
prompt_text = """
|
prompt_text = """
|
||||||
Your task is to extract the content of the page. You will be given a page and a goal, and you should extract all relevant information around this goal from the page.
|
Your task is to extract the content of the page. You will be given a page and a goal, and you should extract all relevant information around this goal from the page. If the goal is vague, summarize the page. Respond in json format.
|
||||||
|
|
||||||
Examples of extraction goals:
|
|
||||||
- Extract all company names
|
|
||||||
- Extract specific descriptions
|
|
||||||
- Extract all information about a topic
|
|
||||||
- Extract links with companies in structured format
|
|
||||||
- Extract all links
|
|
||||||
|
|
||||||
If the goal is vague, summarize the page. Respond in JSON format.
|
|
||||||
|
|
||||||
Extraction goal: {goal}
|
Extraction goal: {goal}
|
||||||
|
|
||||||
Page content:
|
Page content:
|
||||||
@ -445,10 +435,54 @@ Page content:
|
|||||||
|
|
||||||
messages = [Message.user_message(formatted_prompt)]
|
messages = [Message.user_message(formatted_prompt)]
|
||||||
|
|
||||||
# Use LLM to extract content based on the goal
|
# Define extraction function for the tool
|
||||||
response = await self.llm.ask(messages)
|
extraction_function = {
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "extract_content",
|
||||||
|
"description": "Extract specific information from a webpage based on a goal",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"extracted_content": {
|
||||||
|
"type": "object",
|
||||||
|
"description": "The content extracted from the page according to the goal",
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["extracted_content"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Use LLM to extract content with required function calling
|
||||||
|
response = await self.llm.ask_tool(
|
||||||
|
messages,
|
||||||
|
tools=[extraction_function],
|
||||||
|
tool_choice="required",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract content from function call response
|
||||||
|
if (
|
||||||
|
response
|
||||||
|
and response.tool_calls
|
||||||
|
and len(response.tool_calls) > 0
|
||||||
|
):
|
||||||
|
# Get the first tool call arguments
|
||||||
|
tool_call = response.tool_calls[0]
|
||||||
|
# Parse the JSON arguments
|
||||||
|
try:
|
||||||
|
args = json.loads(tool_call.function.arguments)
|
||||||
|
extracted_content = args.get("extracted_content", {})
|
||||||
|
# Format extracted content as JSON string
|
||||||
|
content_json = json.dumps(
|
||||||
|
extracted_content, indent=2, ensure_ascii=False
|
||||||
|
)
|
||||||
|
msg = f"Extracted from page:\n{content_json}\n"
|
||||||
|
except Exception as e:
|
||||||
|
msg = f"Error parsing extraction result: {str(e)}\nRaw response: {tool_call.function.arguments}"
|
||||||
|
else:
|
||||||
|
msg = "No content was extracted from the page."
|
||||||
|
|
||||||
msg = f"Extracted from page:\n{response}\n"
|
|
||||||
return ToolResult(output=msg)
|
return ToolResult(output=msg)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# Provide a more helpful error message
|
# Provide a more helpful error message
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
from app.tool.search.baidu_search import BaiduSearchEngine
|
from app.tool.search.baidu_search import BaiduSearchEngine
|
||||||
from app.tool.search.base import WebSearchEngine
|
from app.tool.search.base import WebSearchEngine
|
||||||
|
from app.tool.search.bing_search import BingSearchEngine
|
||||||
from app.tool.search.duckduckgo_search import DuckDuckGoSearchEngine
|
from app.tool.search.duckduckgo_search import DuckDuckGoSearchEngine
|
||||||
from app.tool.search.google_search import GoogleSearchEngine
|
from app.tool.search.google_search import GoogleSearchEngine
|
||||||
|
|
||||||
@ -9,4 +10,5 @@ __all__ = [
|
|||||||
"BaiduSearchEngine",
|
"BaiduSearchEngine",
|
||||||
"DuckDuckGoSearchEngine",
|
"DuckDuckGoSearchEngine",
|
||||||
"GoogleSearchEngine",
|
"GoogleSearchEngine",
|
||||||
|
"BingSearchEngine",
|
||||||
]
|
]
|
||||||
|
146
app/tool/search/bing_search.py
Normal file
146
app/tool/search/bing_search.py
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
from typing import List
|
||||||
|
|
||||||
|
import requests
|
||||||
|
from bs4 import BeautifulSoup
|
||||||
|
|
||||||
|
from app.logger import logger
|
||||||
|
from app.tool.search.base import WebSearchEngine
|
||||||
|
|
||||||
|
|
||||||
|
ABSTRACT_MAX_LENGTH = 300
|
||||||
|
|
||||||
|
USER_AGENTS = [
|
||||||
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36",
|
||||||
|
"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)",
|
||||||
|
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/49.0.2623.108 Chrome/49.0.2623.108 Safari/537.36",
|
||||||
|
"Mozilla/5.0 (Windows; U; Windows NT 5.1; pt-BR) AppleWebKit/533.3 (KHTML, like Gecko) QtWeb Internet Browser/3.7 http://www.QtWeb.net",
|
||||||
|
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36",
|
||||||
|
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.2 (KHTML, like Gecko) ChromePlus/4.0.222.3 Chrome/4.0.222.3 Safari/532.2",
|
||||||
|
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.4pre) Gecko/20070404 K-Ninja/2.1.3",
|
||||||
|
"Mozilla/5.0 (Future Star Technologies Corp.; Star-Blade OS; x86_64; U; en-US) iNet Browser 4.7",
|
||||||
|
"Mozilla/5.0 (Windows; U; Windows NT 6.1; rv:2.2) Gecko/20110201",
|
||||||
|
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.13) Gecko/20080414 Firefox/2.0.0.13 Pogo/2.0.0.13.6866",
|
||||||
|
]
|
||||||
|
|
||||||
|
HEADERS = {
|
||||||
|
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8",
|
||||||
|
"Content-Type": "application/x-www-form-urlencoded",
|
||||||
|
"User-Agent": USER_AGENTS[0],
|
||||||
|
"Referer": "https://www.bing.com/",
|
||||||
|
"Accept-Encoding": "gzip, deflate",
|
||||||
|
"Accept-Language": "zh-CN,zh;q=0.9",
|
||||||
|
}
|
||||||
|
|
||||||
|
BING_HOST_URL = "https://www.bing.com"
|
||||||
|
BING_SEARCH_URL = "https://www.bing.com/search?q="
|
||||||
|
|
||||||
|
|
||||||
|
class BingSearchEngine(WebSearchEngine):
|
||||||
|
session: requests.Session = None
|
||||||
|
|
||||||
|
def __init__(self, **data):
|
||||||
|
"""Initialize the BingSearch tool with a requests session."""
|
||||||
|
super().__init__(**data)
|
||||||
|
self.session = requests.Session()
|
||||||
|
self.session.headers.update(HEADERS)
|
||||||
|
|
||||||
|
def _search_sync(self, query: str, num_results: int = 10) -> List[str]:
|
||||||
|
"""
|
||||||
|
Synchronous Bing search implementation to retrieve a list of URLs matching a query.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query (str): The search query to submit to Bing. Must not be empty.
|
||||||
|
num_results (int, optional): The maximum number of URLs to return. Defaults to 10.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: A list of URLs from the search results, capped at `num_results`.
|
||||||
|
Returns an empty list if the query is empty or no results are found.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- Pagination is handled by incrementing the `first` parameter and following `next_url` links.
|
||||||
|
- If fewer results than `num_results` are available, all found URLs are returned.
|
||||||
|
"""
|
||||||
|
if not query:
|
||||||
|
return []
|
||||||
|
|
||||||
|
list_result = []
|
||||||
|
first = 1
|
||||||
|
next_url = BING_SEARCH_URL + query
|
||||||
|
|
||||||
|
while len(list_result) < num_results:
|
||||||
|
data, next_url = self._parse_html(
|
||||||
|
next_url, rank_start=len(list_result), first=first
|
||||||
|
)
|
||||||
|
if data:
|
||||||
|
list_result.extend([item["url"] for item in data])
|
||||||
|
if not next_url:
|
||||||
|
break
|
||||||
|
first += 10
|
||||||
|
|
||||||
|
return list_result[:num_results]
|
||||||
|
|
||||||
|
def _parse_html(self, url: str, rank_start: int = 0, first: int = 1) -> tuple:
|
||||||
|
"""
|
||||||
|
Parse Bing search result HTML synchronously to extract search results and the next page URL.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
url (str): The URL of the Bing search results page to parse.
|
||||||
|
rank_start (int, optional): The starting rank for numbering the search results. Defaults to 0.
|
||||||
|
first (int, optional): Unused parameter (possibly legacy). Defaults to 1.
|
||||||
|
Returns:
|
||||||
|
tuple: A tuple containing:
|
||||||
|
- list: A list of dictionaries with keys 'title', 'abstract', 'url', and 'rank' for each result.
|
||||||
|
- str or None: The URL of the next results page, or None if there is no next page.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
res = self.session.get(url=url)
|
||||||
|
res.encoding = "utf-8"
|
||||||
|
root = BeautifulSoup(res.text, "lxml")
|
||||||
|
|
||||||
|
list_data = []
|
||||||
|
ol_results = root.find("ol", id="b_results")
|
||||||
|
if not ol_results:
|
||||||
|
return [], None
|
||||||
|
|
||||||
|
for li in ol_results.find_all("li", class_="b_algo"):
|
||||||
|
title = ""
|
||||||
|
url = ""
|
||||||
|
abstract = ""
|
||||||
|
try:
|
||||||
|
h2 = li.find("h2")
|
||||||
|
if h2:
|
||||||
|
title = h2.text.strip()
|
||||||
|
url = h2.a["href"].strip()
|
||||||
|
|
||||||
|
p = li.find("p")
|
||||||
|
if p:
|
||||||
|
abstract = p.text.strip()
|
||||||
|
|
||||||
|
if ABSTRACT_MAX_LENGTH and len(abstract) > ABSTRACT_MAX_LENGTH:
|
||||||
|
abstract = abstract[:ABSTRACT_MAX_LENGTH]
|
||||||
|
|
||||||
|
rank_start += 1
|
||||||
|
list_data.append(
|
||||||
|
{
|
||||||
|
"title": title,
|
||||||
|
"abstract": abstract,
|
||||||
|
"url": url,
|
||||||
|
"rank": rank_start,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
|
||||||
|
next_btn = root.find("a", title="Next page")
|
||||||
|
if not next_btn:
|
||||||
|
return list_data, None
|
||||||
|
|
||||||
|
next_url = BING_HOST_URL + next_btn["href"]
|
||||||
|
return list_data, next_url
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error parsing HTML: {e}")
|
||||||
|
return [], None
|
||||||
|
|
||||||
|
def perform_search(self, query, num_results=10, *args, **kwargs):
|
||||||
|
"""Bing search engine."""
|
||||||
|
return self._search_sync(query, num_results=num_results)
|
@ -7,6 +7,7 @@ from app.config import config
|
|||||||
from app.tool.base import BaseTool
|
from app.tool.base import BaseTool
|
||||||
from app.tool.search import (
|
from app.tool.search import (
|
||||||
BaiduSearchEngine,
|
BaiduSearchEngine,
|
||||||
|
BingSearchEngine,
|
||||||
DuckDuckGoSearchEngine,
|
DuckDuckGoSearchEngine,
|
||||||
GoogleSearchEngine,
|
GoogleSearchEngine,
|
||||||
WebSearchEngine,
|
WebSearchEngine,
|
||||||
@ -37,6 +38,7 @@ class WebSearch(BaseTool):
|
|||||||
"google": GoogleSearchEngine(),
|
"google": GoogleSearchEngine(),
|
||||||
"baidu": BaiduSearchEngine(),
|
"baidu": BaiduSearchEngine(),
|
||||||
"duckduckgo": DuckDuckGoSearchEngine(),
|
"duckduckgo": DuckDuckGoSearchEngine(),
|
||||||
|
"bing": BingSearchEngine(),
|
||||||
}
|
}
|
||||||
|
|
||||||
async def execute(self, query: str, num_results: int = 10) -> List[str]:
|
async def execute(self, query: str, num_results: int = 10) -> List[str]:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user