Compare commits

...

21 Commits

Author SHA1 Message Date
Sheng Fan
c432ec9286 chore(boto3): restore boto3 dependency 2025-03-21 18:46:48 +08:00
Sheng Fan
65470c2ae9 style(pre-commit): fix 2025-03-21 18:25:58 +08:00
Sheng Fan
30342247c0 feat: Add shortcut script for launching OpenManus MCP server 2025-03-21 18:24:23 +08:00
liangxinbing
a61ef9b737 Comment boto3 to resolve dependency conflicts for requirements.txt 2025-03-21 17:54:22 +08:00
liangxinbing
82e3140357 update structure of flow 2025-03-21 17:37:16 +08:00
liangxinbing
d0492a500e update run_default for run_mcp.py 2025-03-21 17:36:29 +08:00
mannaandpoem
35209978e1
Merge pull request #883 from leeseett/main
Remove merge conflict hint code
2025-03-21 13:09:42 +08:00
leeseett
3dd990e554
删除合并冲突提示代码 2025-03-21 11:49:26 +08:00
Sheng Fan
e218c0655f
Merge pull request #882 from fred913/patch/mcp-server
Patch/mcp server
2025-03-21 11:28:03 +08:00
Sheng Fan
5d18b5dc69
chore: remove useless file 2025-03-21 11:25:16 +08:00
Sheng Fan
567bffb441 style: pre-commit 2025-03-21 11:23:55 +08:00
Sheng Fan
acb435f9f5
Merge branch 'mannaandpoem:main' into patch/mcp-server 2025-03-21 11:22:07 +08:00
mannaandpoem
d63e88f089
Merge pull request #772 from a-holm/fix-for-search-rate-limits
feat(search): Add configurable fallback engines and retry logic for robust web search
2025-03-21 01:56:21 +08:00
Sheng Fan
08a20f6880 chore(mcp.server): remove irregular environment patch
refactor(mcp.server): prevent browser-use from affecting mcp stdio communication
2025-03-20 13:25:56 +08:00
Johan Holm
59a92257be Merge branch 'main' of https://github.com/a-holm/OpenManus into fix-for-search-rate-limits 2025-03-19 10:50:25 +01:00
a-holm
855caad4d9 Merge branch 'fix-for-search-rate-limits' of https://github.com/a-holm/OpenManus into fix-for-search-rate-limits 2025-03-18 21:53:34 +01:00
a-holm
95e3487402 Merge branch 'main' of https://github.com/a-holm/OpenManus into fix-for-search-rate-limits 2025-03-18 21:47:16 +01:00
Johan A. Holm
fe44fe726d
Merge branch 'main' into fix-for-search-rate-limits 2025-03-18 20:51:45 +01:00
Johan Holm
c7858c2eb4 Make sure to only include fallback search engines 2025-03-18 09:53:30 +01:00
Johan Holm
9fa12e594c update from pre-commit 2025-03-17 11:05:03 +01:00
Johan Holm
711c2805e4 feat(search): Add robust fallback system with configurable retries and enhanced error handling
- Implement multi-engine failover system with configurable fallback order
    - Add retry logic with exponential backoff and rate limit detection
    - Introduce search configuration options:
      * fallback_engines: Ordered list of backup search providers
      * retry_delay: Seconds between retry batches (default: 60)
      * max_retries: Maximum system-wide retry attempts (default: 3)
    - Improve error resilience with:
      - Automatic engine switching on 429/Too Many Requests
      - Full system retries after configurable cooldown periods
      - Detailed logging for diagnostics and monitoring
    - Enhance engine prioritization logic:
      1. Primary configured engine
      2. Configured fallback engines
      3. Remaining available engines

    Example configuration:
    [search]
    engine = "Google"
    fallback_engines = ["DuckDuckGo", "Baidu"]  # Cascading fallback order
    retry_delay = 60                            # 1 minute between retry batches
    max_retries = 3                             # Attempt 3 full system retries

    This addresses critical reliability issues by:
    - Preventing search failures due to single-engine rate limits
    - Enabling recovery from transient network errors
    - Providing operational flexibility through configurable parameters
    - Improving visibility through granular logging (INFO/WARN/ERROR)
2025-03-17 10:43:42 +01:00
11 changed files with 355 additions and 197 deletions

View File

@ -1,15 +1,18 @@
from typing import Dict, List, Literal, Optional, Union
import boto3
import json
import sys
import time
import uuid
from datetime import datetime
import sys
from typing import Dict, List, Literal, Optional
import boto3
# Global variables to track the current tool use ID across function calls
# Tmp solution
CURRENT_TOOLUSE_ID = None
# Class to handle OpenAI-style response formatting
class OpenAIResponse:
def __init__(self, data):
@ -18,31 +21,37 @@ class OpenAIResponse:
if isinstance(value, dict):
value = OpenAIResponse(value)
elif isinstance(value, list):
value = [OpenAIResponse(item) if isinstance(item, dict) else item for item in value]
value = [
OpenAIResponse(item) if isinstance(item, dict) else item
for item in value
]
setattr(self, key, value)
def model_dump(self, *args, **kwargs):
# Convert object to dict and add timestamp
data = self.__dict__
data['created_at'] = datetime.now().isoformat()
data["created_at"] = datetime.now().isoformat()
return data
# Main client class for interacting with Amazon Bedrock
class BedrockClient:
def __init__(self):
# Initialize Bedrock client, you need to configure AWS env first
try:
self.client = boto3.client('bedrock-runtime')
self.client = boto3.client("bedrock-runtime")
self.chat = Chat(self.client)
except Exception as e:
print(f"Error initializing Bedrock client: {e}")
sys.exit(1)
# Chat interface class
class Chat:
def __init__(self, client):
self.completions = ChatCompletions(client)
# Core class handling chat completions functionality
class ChatCompletions:
def __init__(self, client):
@ -52,19 +61,23 @@ class ChatCompletions:
# Convert OpenAI function calling format to Bedrock tool format
bedrock_tools = []
for tool in tools:
if tool.get('type') == 'function':
function = tool.get('function', {})
if tool.get("type") == "function":
function = tool.get("function", {})
bedrock_tool = {
"toolSpec": {
"name": function.get('name', ''),
"description": function.get('description', ''),
"name": function.get("name", ""),
"description": function.get("description", ""),
"inputSchema": {
"json": {
"type": "object",
"properties": function.get('parameters', {}).get('properties', {}),
"required": function.get('parameters', {}).get('required', [])
"properties": function.get("parameters", {}).get(
"properties", {}
),
"required": function.get("parameters", {}).get(
"required", []
),
}
}
},
}
}
bedrock_tools.append(bedrock_tool)
@ -75,41 +88,43 @@ class ChatCompletions:
bedrock_messages = []
system_prompt = []
for message in messages:
if message.get('role') == 'system':
system_prompt = [{"text": message.get('content')}]
elif message.get('role') == 'user':
if message.get("role") == "system":
system_prompt = [{"text": message.get("content")}]
elif message.get("role") == "user":
bedrock_message = {
"role": message.get('role', 'user'),
"content": [{"text": message.get('content')}]
"role": message.get("role", "user"),
"content": [{"text": message.get("content")}],
}
bedrock_messages.append(bedrock_message)
elif message.get('role') == 'assistant':
elif message.get("role") == "assistant":
bedrock_message = {
"role": "assistant",
"content": [{"text": message.get('content')}]
"content": [{"text": message.get("content")}],
}
openai_tool_calls = message.get('tool_calls', [])
openai_tool_calls = message.get("tool_calls", [])
if openai_tool_calls:
bedrock_tool_use = {
"toolUseId": openai_tool_calls[0]['id'],
"name": openai_tool_calls[0]['function']['name'],
"input": json.loads(openai_tool_calls[0]['function']['arguments'])
"toolUseId": openai_tool_calls[0]["id"],
"name": openai_tool_calls[0]["function"]["name"],
"input": json.loads(
openai_tool_calls[0]["function"]["arguments"]
),
}
bedrock_message['content'].append({"toolUse": bedrock_tool_use})
bedrock_message["content"].append({"toolUse": bedrock_tool_use})
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = openai_tool_calls[0]['id']
CURRENT_TOOLUSE_ID = openai_tool_calls[0]["id"]
bedrock_messages.append(bedrock_message)
elif message.get('role') == 'tool':
elif message.get("role") == "tool":
bedrock_message = {
"role": "user",
"content": [
{
"toolResult": {
"toolUseId": CURRENT_TOOLUSE_ID,
"content": [{"text":message.get('content')}]
"content": [{"text": message.get("content")}],
}
}
]
],
}
bedrock_messages.append(bedrock_message)
else:
@ -119,26 +134,27 @@ class ChatCompletions:
def _convert_bedrock_response_to_openai_format(self, bedrock_response):
# Convert Bedrock response format to OpenAI format
content = ""
if bedrock_response.get('output', {}).get('message', {}).get('content'):
content_array = bedrock_response['output']['message']['content']
content = "".join(item.get('text', '') for item in content_array)
if content == "": content = "."
if bedrock_response.get("output", {}).get("message", {}).get("content"):
content_array = bedrock_response["output"]["message"]["content"]
content = "".join(item.get("text", "") for item in content_array)
if content == "":
content = "."
# Handle tool calls in response
openai_tool_calls = []
if bedrock_response.get('output', {}).get('message', {}).get('content'):
for content_item in bedrock_response['output']['message']['content']:
if content_item.get('toolUse'):
bedrock_tool_use = content_item['toolUse']
if bedrock_response.get("output", {}).get("message", {}).get("content"):
for content_item in bedrock_response["output"]["message"]["content"]:
if content_item.get("toolUse"):
bedrock_tool_use = content_item["toolUse"]
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = bedrock_tool_use['toolUseId']
CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"]
openai_tool_call = {
'id': CURRENT_TOOLUSE_ID,
'type': 'function',
'function': {
'name': bedrock_tool_use['name'],
'arguments': json.dumps(bedrock_tool_use['input'])
}
"id": CURRENT_TOOLUSE_ID,
"type": "function",
"function": {
"name": bedrock_tool_use["name"],
"arguments": json.dumps(bedrock_tool_use["input"]),
},
}
openai_tool_calls.append(openai_tool_call)
@ -150,126 +166,169 @@ class ChatCompletions:
"system_fingerprint": None,
"choices": [
{
"finish_reason": bedrock_response.get('stopReason', 'end_turn'),
"finish_reason": bedrock_response.get("stopReason", "end_turn"),
"index": 0,
"message": {
"content": content,
"role": bedrock_response.get('output', {}).get('message', {}).get('role', 'assistant'),
"tool_calls": openai_tool_calls if openai_tool_calls != [] else None,
"function_call": None
}
"role": bedrock_response.get("output", {})
.get("message", {})
.get("role", "assistant"),
"tool_calls": openai_tool_calls
if openai_tool_calls != []
else None,
"function_call": None,
},
}
],
"usage": {
"completion_tokens": bedrock_response.get('usage', {}).get('outputTokens', 0),
"prompt_tokens": bedrock_response.get('usage', {}).get('inputTokens', 0),
"total_tokens": bedrock_response.get('usage', {}).get('totalTokens', 0)
}
"completion_tokens": bedrock_response.get("usage", {}).get(
"outputTokens", 0
),
"prompt_tokens": bedrock_response.get("usage", {}).get(
"inputTokens", 0
),
"total_tokens": bedrock_response.get("usage", {}).get("totalTokens", 0),
},
}
return OpenAIResponse(openai_format)
async def _invoke_bedrock(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
# Non-streaming invocation of Bedrock model
system_prompt, bedrock_messages = self._convert_openai_messages_to_bedrock_format(messages)
(
system_prompt,
bedrock_messages,
) = self._convert_openai_messages_to_bedrock_format(messages)
response = self.client.converse(
modelId = model,
system = system_prompt,
messages = bedrock_messages,
inferenceConfig = {"temperature": temperature, "maxTokens": max_tokens},
toolConfig = {"tools": tools} if tools else None,
modelId=model,
system=system_prompt,
messages=bedrock_messages,
inferenceConfig={"temperature": temperature, "maxTokens": max_tokens},
toolConfig={"tools": tools} if tools else None,
)
openai_response = self._convert_bedrock_response_to_openai_format(response)
return openai_response
async def _invoke_bedrock_stream(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
# Streaming invocation of Bedrock model
system_prompt, bedrock_messages = self._convert_openai_messages_to_bedrock_format(messages)
(
system_prompt,
bedrock_messages,
) = self._convert_openai_messages_to_bedrock_format(messages)
response = self.client.converse_stream(
modelId = model,
system = system_prompt,
messages = bedrock_messages,
inferenceConfig = {"temperature": temperature, "maxTokens": max_tokens},
toolConfig = {"tools": tools} if tools else None,
modelId=model,
system=system_prompt,
messages=bedrock_messages,
inferenceConfig={"temperature": temperature, "maxTokens": max_tokens},
toolConfig={"tools": tools} if tools else None,
)
# Initialize response structure
bedrock_response = {
'output': {
'message': {
'role': '',
'content': []
}
},
'stopReason': '',
'usage': {},
'metrics': {}
"output": {"message": {"role": "", "content": []}},
"stopReason": "",
"usage": {},
"metrics": {},
}
bedrock_response_text = ""
bedrock_response_tool_input = ""
# Process streaming response
stream = response.get('stream')
stream = response.get("stream")
if stream:
for event in stream:
if event.get('messageStart', {}).get('role'):
bedrock_response['output']['message']['role'] = event['messageStart']['role']
if event.get('contentBlockDelta', {}).get('delta', {}).get('text'):
bedrock_response_text += event['contentBlockDelta']['delta']['text']
print(event['contentBlockDelta']['delta']['text'], end='', flush=True)
if event.get('contentBlockStop', {}).get('contentBlockIndex') == 0:
bedrock_response['output']['message']['content'].append({"text": bedrock_response_text})
if event.get('contentBlockStart', {}).get('start', {}).get('toolUse'):
bedrock_tool_use = event['contentBlockStart']['start']['toolUse']
if event.get("messageStart", {}).get("role"):
bedrock_response["output"]["message"]["role"] = event[
"messageStart"
]["role"]
if event.get("contentBlockDelta", {}).get("delta", {}).get("text"):
bedrock_response_text += event["contentBlockDelta"]["delta"]["text"]
print(
event["contentBlockDelta"]["delta"]["text"], end="", flush=True
)
if event.get("contentBlockStop", {}).get("contentBlockIndex") == 0:
bedrock_response["output"]["message"]["content"].append(
{"text": bedrock_response_text}
)
if event.get("contentBlockStart", {}).get("start", {}).get("toolUse"):
bedrock_tool_use = event["contentBlockStart"]["start"]["toolUse"]
tool_use = {
"toolUseId": bedrock_tool_use['toolUseId'],
"name": bedrock_tool_use['name'],
"toolUseId": bedrock_tool_use["toolUseId"],
"name": bedrock_tool_use["name"],
}
bedrock_response['output']['message']['content'].append({"toolUse": tool_use})
bedrock_response["output"]["message"]["content"].append(
{"toolUse": tool_use}
)
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = bedrock_tool_use['toolUseId']
if event.get('contentBlockDelta', {}).get('delta', {}).get('toolUse'):
bedrock_response_tool_input += event['contentBlockDelta']['delta']['toolUse']['input']
print(event['contentBlockDelta']['delta']['toolUse']['input'], end='', flush=True)
if event.get('contentBlockStop', {}).get('contentBlockIndex') == 1:
bedrock_response['output']['message']['content'][1]['toolUse']['input'] = json.loads(bedrock_response_tool_input)
CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"]
if event.get("contentBlockDelta", {}).get("delta", {}).get("toolUse"):
bedrock_response_tool_input += event["contentBlockDelta"]["delta"][
"toolUse"
]["input"]
print(
event["contentBlockDelta"]["delta"]["toolUse"]["input"],
end="",
flush=True,
)
if event.get("contentBlockStop", {}).get("contentBlockIndex") == 1:
bedrock_response["output"]["message"]["content"][1]["toolUse"][
"input"
] = json.loads(bedrock_response_tool_input)
print()
openai_response = self._convert_bedrock_response_to_openai_format(bedrock_response)
openai_response = self._convert_bedrock_response_to_openai_format(
bedrock_response
)
return openai_response
def create(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
stream: Optional[bool] = True,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
stream: Optional[bool] = True,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
# Main entry point for chat completion
bedrock_tools = []
if tools is not None:
bedrock_tools = self._convert_openai_tools_to_bedrock_format(tools)
if stream:
return self._invoke_bedrock_stream(model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs)
return self._invoke_bedrock_stream(
model,
messages,
max_tokens,
temperature,
bedrock_tools,
tool_choice,
**kwargs,
)
else:
return self._invoke_bedrock(model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs)
return self._invoke_bedrock(
model,
messages,
max_tokens,
temperature,
bedrock_tools,
tool_choice,
**kwargs,
)

View File

@ -37,6 +37,18 @@ class ProxySettings(BaseModel):
class SearchSettings(BaseModel):
engine: str = Field(default="Google", description="Search engine the llm to use")
fallback_engines: List[str] = Field(
default_factory=lambda: ["DuckDuckGo", "Baidu"],
description="Fallback search engines to try if the primary engine fails",
)
retry_delay: int = Field(
default=60,
description="Seconds to wait before retrying all engines again after they all fail",
)
max_retries: int = Field(
default=3,
description="Maximum number of times to retry all engines when all fail",
)
class BrowserSettings(BaseModel):

View File

@ -1,5 +1,4 @@
from abc import ABC, abstractmethod
from enum import Enum
from typing import Dict, List, Optional, Union
from pydantic import BaseModel
@ -7,10 +6,6 @@ from pydantic import BaseModel
from app.agent.base import BaseAgent
class FlowType(str, Enum):
PLANNING = "planning"
class BaseFlow(BaseModel, ABC):
"""Base class for execution flows supporting multiple agents"""
@ -60,32 +55,3 @@ class BaseFlow(BaseModel, ABC):
@abstractmethod
async def execute(self, input_text: str) -> str:
"""Execute the flow with given input"""
class PlanStepStatus(str, Enum):
"""Enum class defining possible statuses of a plan step"""
NOT_STARTED = "not_started"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
BLOCKED = "blocked"
@classmethod
def get_all_statuses(cls) -> list[str]:
"""Return a list of all possible step status values"""
return [status.value for status in cls]
@classmethod
def get_active_statuses(cls) -> list[str]:
"""Return a list of values representing active statuses (not started or in progress)"""
return [cls.NOT_STARTED.value, cls.IN_PROGRESS.value]
@classmethod
def get_status_marks(cls) -> Dict[str, str]:
"""Return a mapping of statuses to their marker symbols"""
return {
cls.COMPLETED.value: "[✓]",
cls.IN_PROGRESS.value: "[→]",
cls.BLOCKED.value: "[!]",
cls.NOT_STARTED.value: "[ ]",
}

View File

@ -1,10 +1,15 @@
from enum import Enum
from typing import Dict, List, Union
from app.agent.base import BaseAgent
from app.flow.base import BaseFlow, FlowType
from app.flow.base import BaseFlow
from app.flow.planning import PlanningFlow
class FlowType(str, Enum):
PLANNING = "planning"
class FlowFactory:
"""Factory for creating different types of flows with support for multiple agents"""

View File

@ -1,17 +1,47 @@
import json
import time
from enum import Enum
from typing import Dict, List, Optional, Union
from pydantic import Field
from app.agent.base import BaseAgent
from app.flow.base import BaseFlow, PlanStepStatus
from app.flow.base import BaseFlow
from app.llm import LLM
from app.logger import logger
from app.schema import AgentState, Message, ToolChoice
from app.tool import PlanningTool
class PlanStepStatus(str, Enum):
"""Enum class defining possible statuses of a plan step"""
NOT_STARTED = "not_started"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
BLOCKED = "blocked"
@classmethod
def get_all_statuses(cls) -> list[str]:
"""Return a list of all possible step status values"""
return [status.value for status in cls]
@classmethod
def get_active_statuses(cls) -> list[str]:
"""Return a list of values representing active statuses (not started or in progress)"""
return [cls.NOT_STARTED.value, cls.IN_PROGRESS.value]
@classmethod
def get_status_marks(cls) -> Dict[str, str]:
"""Return a mapping of statuses to their marker symbols"""
return {
cls.COMPLETED.value: "[✓]",
cls.IN_PROGRESS.value: "[→]",
cls.BLOCKED.value: "[!]",
cls.NOT_STARTED.value: "[ ]",
}
class PlanningFlow(BaseFlow):
"""A flow that manages planning and execution of tasks using agents."""

View File

@ -18,6 +18,7 @@ from tenacity import (
wait_random_exponential,
)
from app.bedrock import BedrockClient
from app.config import LLMSettings, config
from app.exceptions import TokenLimitExceeded
from app.logger import logger # Assuming a logger is set up in your app
@ -28,7 +29,6 @@ from app.schema import (
Message,
ToolChoice,
)
from app.bedrock import BedrockClient
REASONING_MODELS = ["o1", "o3-mini"]

View File

@ -1,30 +1,19 @@
import logging
import sys
logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(sys.stderr)])
import argparse
import asyncio
import atexit
import json
import logging
import os
import sys
from inspect import Parameter, Signature
from typing import Any, Dict, Optional
from mcp.server.fastmcp import FastMCP
# Add directories to Python path (needed for proper importing)
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
root_dir = os.path.dirname(parent_dir)
sys.path.insert(0, parent_dir)
sys.path.insert(0, current_dir)
sys.path.insert(0, root_dir)
# Configure logging (using the same format as original)
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger("mcp-server")
from app.logger import logger
from app.tool.base import BaseTool
from app.tool.bash import Bash
from app.tool.browser_use_tool import BrowserUseTool
@ -45,11 +34,6 @@ class MCPServer:
self.tools["editor"] = StrReplaceEditor()
self.tools["terminate"] = Terminate()
from app.logger import logger as app_logger
global logger
logger = app_logger
def register_tool(self, tool: BaseTool, method_name: Optional[str] = None) -> None:
"""Register a tool with parameter validation and documentation."""
tool_name = method_name or tool.name

View File

@ -4,6 +4,7 @@ from typing import List
from tenacity import retry, stop_after_attempt, wait_exponential
from app.config import config
from app.logger import logger
from app.tool.base import BaseTool
from app.tool.search import (
BaiduSearchEngine,
@ -44,6 +45,8 @@ class WebSearch(BaseTool):
async def execute(self, query: str, num_results: int = 10) -> List[str]:
"""
Execute a Web search and return a list of URLs.
Tries engines in order based on configuration, falling back if an engine fails with errors.
If all engines fail, it will wait and retry up to the configured number of times.
Args:
query (str): The search query to submit to the search engine.
@ -52,37 +55,109 @@ class WebSearch(BaseTool):
Returns:
List[str]: A list of URLs matching the search query.
"""
# Get retry settings from config
retry_delay = 60 # Default to 60 seconds
max_retries = 3 # Default to 3 retries
if config.search_config:
retry_delay = getattr(config.search_config, "retry_delay", 60)
max_retries = getattr(config.search_config, "max_retries", 3)
# Try searching with retries when all engines fail
for retry_count in range(
max_retries + 1
): # +1 because first try is not a retry
links = await self._try_all_engines(query, num_results)
if links:
return links
if retry_count < max_retries:
# All engines failed, wait and retry
logger.warning(
f"All search engines failed. Waiting {retry_delay} seconds before retry {retry_count + 1}/{max_retries}..."
)
await asyncio.sleep(retry_delay)
else:
logger.error(
f"All search engines failed after {max_retries} retries. Giving up."
)
return []
async def _try_all_engines(self, query: str, num_results: int) -> List[str]:
"""
Try all search engines in the configured order.
Args:
query (str): The search query to submit to the search engine.
num_results (int): The number of search results to return.
Returns:
List[str]: A list of URLs matching the search query, or empty list if all engines fail.
"""
engine_order = self._get_engine_order()
failed_engines = []
for engine_name in engine_order:
engine = self._search_engine[engine_name]
try:
logger.info(f"🔎 Attempting search with {engine_name.capitalize()}...")
links = await self._perform_search_with_engine(
engine, query, num_results
)
if links:
if failed_engines:
logger.info(
f"Search successful with {engine_name.capitalize()} after trying: {', '.join(failed_engines)}"
)
return links
except Exception as e:
print(f"Search engine '{engine_name}' failed with error: {e}")
failed_engines.append(engine_name.capitalize())
is_rate_limit = "429" in str(e) or "Too Many Requests" in str(e)
if is_rate_limit:
logger.warning(
f"⚠️ {engine_name.capitalize()} search engine rate limit exceeded, trying next engine..."
)
else:
logger.warning(
f"⚠️ {engine_name.capitalize()} search failed with error: {e}"
)
if failed_engines:
logger.error(f"All search engines failed: {', '.join(failed_engines)}")
return []
def _get_engine_order(self) -> List[str]:
"""
Determines the order in which to try search engines.
Preferred engine is first (based on configuration), followed by the remaining engines.
Preferred engine is first (based on configuration), followed by fallback engines,
and then the remaining engines.
Returns:
List[str]: Ordered list of search engine names.
"""
preferred = "google"
if config.search_config and config.search_config.engine:
preferred = config.search_config.engine.lower()
fallbacks = []
if config.search_config:
if config.search_config.engine:
preferred = config.search_config.engine.lower()
if config.search_config.fallback_engines:
fallbacks = [
engine.lower() for engine in config.search_config.fallback_engines
]
engine_order = []
# Add preferred engine first
if preferred in self._search_engine:
engine_order.append(preferred)
for key in self._search_engine:
if key not in engine_order:
engine_order.append(key)
# Add configured fallback engines in order
for fallback in fallbacks:
if fallback in self._search_engine and fallback not in engine_order:
engine_order.append(fallback)
return engine_order
@retry(

View File

@ -73,6 +73,13 @@ temperature = 0.0 # Controls randomness for vision mod
# [search]
# Search engine for agent to use. Default is "Google", can be set to "Baidu" or "DuckDuckGo".
#engine = "Google"
# Fallback engine order. Default is ["DuckDuckGo", "Baidu"] - will try in this order after primary engine fails.
#fallback_engines = ["DuckDuckGo", "Baidu"]
# Seconds to wait before retrying all engines again when they all fail due to rate limits. Default is 60.
#retry_delay = 60
# Maximum number of times to retry all engines when all fail. Default is 3.
#max_retries = 3
## Sandbox configuration
#[sandbox]

View File

@ -13,10 +13,14 @@ class MCPRunner:
def __init__(self):
self.root_path = config.root_path
self.server_script = self.root_path / "app" / "mcp" / "server.py"
self.server_reference = "app.mcp.server"
self.agent = MCPAgent()
async def initialize(self, connection_type: str, server_url: str = None) -> None:
async def initialize(
self,
connection_type: str,
server_url: str | None = None,
) -> None:
"""Initialize the MCP agent with the appropriate connection."""
logger.info(f"Initializing MCPAgent with {connection_type} connection...")
@ -24,7 +28,7 @@ class MCPRunner:
await self.agent.initialize(
connection_type="stdio",
command=sys.executable,
args=[str(self.server_script)],
args=["-m", self.server_reference],
)
else: # sse
await self.agent.initialize(connection_type="sse", server_url=server_url)
@ -47,9 +51,14 @@ class MCPRunner:
async def run_default(self) -> None:
"""Run the agent in default mode."""
await self.agent.run(
"Hello, what tools are available to me? Terminate after you have listed the tools."
)
prompt = input("Enter your prompt: ")
if not prompt.strip():
logger.warning("Empty prompt provided.")
return
logger.warning("Processing your request...")
await self.agent.run(prompt)
logger.info("Request processing completed.")
async def cleanup(self) -> None:
"""Clean up agent resources."""

11
run_mcp_server.py Normal file
View File

@ -0,0 +1,11 @@
# coding: utf-8
# A shortcut to launch OpenManus MCP server, where its introduction also solves other import issues.
from app.mcp.server import MCPServer, parse_args
if __name__ == "__main__":
args = parse_args()
# Create and run server (maintaining original flow)
server = MCPServer()
server.run(transport=args.transport)