Compare commits

..

1 Commits

Author SHA1 Message Date
liangxinbing
0f449b849e update flow 2025-03-21 16:41:39 +08:00
8 changed files with 161 additions and 318 deletions

View File

@ -1,18 +1,15 @@
from typing import Dict, List, Literal, Optional, Union
import boto3
import json
import sys
import time
import uuid
from datetime import datetime
from typing import Dict, List, Literal, Optional
import boto3
import sys
# Global variables to track the current tool use ID across function calls
# Tmp solution
CURRENT_TOOLUSE_ID = None
# Class to handle OpenAI-style response formatting
class OpenAIResponse:
def __init__(self, data):
@ -21,37 +18,31 @@ class OpenAIResponse:
if isinstance(value, dict):
value = OpenAIResponse(value)
elif isinstance(value, list):
value = [
OpenAIResponse(item) if isinstance(item, dict) else item
for item in value
]
value = [OpenAIResponse(item) if isinstance(item, dict) else item for item in value]
setattr(self, key, value)
def model_dump(self, *args, **kwargs):
# Convert object to dict and add timestamp
data = self.__dict__
data["created_at"] = datetime.now().isoformat()
data['created_at'] = datetime.now().isoformat()
return data
# Main client class for interacting with Amazon Bedrock
class BedrockClient:
def __init__(self):
# Initialize Bedrock client, you need to configure AWS env first
try:
self.client = boto3.client("bedrock-runtime")
self.client = boto3.client('bedrock-runtime')
self.chat = Chat(self.client)
except Exception as e:
print(f"Error initializing Bedrock client: {e}")
sys.exit(1)
# Chat interface class
class Chat:
def __init__(self, client):
self.completions = ChatCompletions(client)
# Core class handling chat completions functionality
class ChatCompletions:
def __init__(self, client):
@ -61,23 +52,19 @@ class ChatCompletions:
# Convert OpenAI function calling format to Bedrock tool format
bedrock_tools = []
for tool in tools:
if tool.get("type") == "function":
function = tool.get("function", {})
if tool.get('type') == 'function':
function = tool.get('function', {})
bedrock_tool = {
"toolSpec": {
"name": function.get("name", ""),
"description": function.get("description", ""),
"name": function.get('name', ''),
"description": function.get('description', ''),
"inputSchema": {
"json": {
"type": "object",
"properties": function.get("parameters", {}).get(
"properties", {}
),
"required": function.get("parameters", {}).get(
"required", []
),
"properties": function.get('parameters', {}).get('properties', {}),
"required": function.get('parameters', {}).get('required', [])
}
},
}
}
}
bedrock_tools.append(bedrock_tool)
@ -88,43 +75,41 @@ class ChatCompletions:
bedrock_messages = []
system_prompt = []
for message in messages:
if message.get("role") == "system":
system_prompt = [{"text": message.get("content")}]
elif message.get("role") == "user":
if message.get('role') == 'system':
system_prompt = [{"text": message.get('content')}]
elif message.get('role') == 'user':
bedrock_message = {
"role": message.get("role", "user"),
"content": [{"text": message.get("content")}],
"role": message.get('role', 'user'),
"content": [{"text": message.get('content')}]
}
bedrock_messages.append(bedrock_message)
elif message.get("role") == "assistant":
elif message.get('role') == 'assistant':
bedrock_message = {
"role": "assistant",
"content": [{"text": message.get("content")}],
"content": [{"text": message.get('content')}]
}
openai_tool_calls = message.get("tool_calls", [])
openai_tool_calls = message.get('tool_calls', [])
if openai_tool_calls:
bedrock_tool_use = {
"toolUseId": openai_tool_calls[0]["id"],
"name": openai_tool_calls[0]["function"]["name"],
"input": json.loads(
openai_tool_calls[0]["function"]["arguments"]
),
"toolUseId": openai_tool_calls[0]['id'],
"name": openai_tool_calls[0]['function']['name'],
"input": json.loads(openai_tool_calls[0]['function']['arguments'])
}
bedrock_message["content"].append({"toolUse": bedrock_tool_use})
bedrock_message['content'].append({"toolUse": bedrock_tool_use})
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = openai_tool_calls[0]["id"]
CURRENT_TOOLUSE_ID = openai_tool_calls[0]['id']
bedrock_messages.append(bedrock_message)
elif message.get("role") == "tool":
elif message.get('role') == 'tool':
bedrock_message = {
"role": "user",
"content": [
{
"toolResult": {
"toolUseId": CURRENT_TOOLUSE_ID,
"content": [{"text": message.get("content")}],
"content": [{"text":message.get('content')}]
}
}
],
]
}
bedrock_messages.append(bedrock_message)
else:
@ -134,27 +119,26 @@ class ChatCompletions:
def _convert_bedrock_response_to_openai_format(self, bedrock_response):
# Convert Bedrock response format to OpenAI format
content = ""
if bedrock_response.get("output", {}).get("message", {}).get("content"):
content_array = bedrock_response["output"]["message"]["content"]
content = "".join(item.get("text", "") for item in content_array)
if content == "":
content = "."
if bedrock_response.get('output', {}).get('message', {}).get('content'):
content_array = bedrock_response['output']['message']['content']
content = "".join(item.get('text', '') for item in content_array)
if content == "": content = "."
# Handle tool calls in response
openai_tool_calls = []
if bedrock_response.get("output", {}).get("message", {}).get("content"):
for content_item in bedrock_response["output"]["message"]["content"]:
if content_item.get("toolUse"):
bedrock_tool_use = content_item["toolUse"]
if bedrock_response.get('output', {}).get('message', {}).get('content'):
for content_item in bedrock_response['output']['message']['content']:
if content_item.get('toolUse'):
bedrock_tool_use = content_item['toolUse']
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"]
CURRENT_TOOLUSE_ID = bedrock_tool_use['toolUseId']
openai_tool_call = {
"id": CURRENT_TOOLUSE_ID,
"type": "function",
"function": {
"name": bedrock_tool_use["name"],
"arguments": json.dumps(bedrock_tool_use["input"]),
},
'id': CURRENT_TOOLUSE_ID,
'type': 'function',
'function': {
'name': bedrock_tool_use['name'],
'arguments': json.dumps(bedrock_tool_use['input'])
}
}
openai_tool_calls.append(openai_tool_call)
@ -166,169 +150,126 @@ class ChatCompletions:
"system_fingerprint": None,
"choices": [
{
"finish_reason": bedrock_response.get("stopReason", "end_turn"),
"finish_reason": bedrock_response.get('stopReason', 'end_turn'),
"index": 0,
"message": {
"content": content,
"role": bedrock_response.get("output", {})
.get("message", {})
.get("role", "assistant"),
"tool_calls": openai_tool_calls
if openai_tool_calls != []
else None,
"function_call": None,
},
"role": bedrock_response.get('output', {}).get('message', {}).get('role', 'assistant'),
"tool_calls": openai_tool_calls if openai_tool_calls != [] else None,
"function_call": None
}
}
],
"usage": {
"completion_tokens": bedrock_response.get("usage", {}).get(
"outputTokens", 0
),
"prompt_tokens": bedrock_response.get("usage", {}).get(
"inputTokens", 0
),
"total_tokens": bedrock_response.get("usage", {}).get("totalTokens", 0),
},
"completion_tokens": bedrock_response.get('usage', {}).get('outputTokens', 0),
"prompt_tokens": bedrock_response.get('usage', {}).get('inputTokens', 0),
"total_tokens": bedrock_response.get('usage', {}).get('totalTokens', 0)
}
}
return OpenAIResponse(openai_format)
async def _invoke_bedrock(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
# Non-streaming invocation of Bedrock model
(
system_prompt,
bedrock_messages,
) = self._convert_openai_messages_to_bedrock_format(messages)
system_prompt, bedrock_messages = self._convert_openai_messages_to_bedrock_format(messages)
response = self.client.converse(
modelId=model,
system=system_prompt,
messages=bedrock_messages,
inferenceConfig={"temperature": temperature, "maxTokens": max_tokens},
toolConfig={"tools": tools} if tools else None,
modelId = model,
system = system_prompt,
messages = bedrock_messages,
inferenceConfig = {"temperature": temperature, "maxTokens": max_tokens},
toolConfig = {"tools": tools} if tools else None,
)
openai_response = self._convert_bedrock_response_to_openai_format(response)
return openai_response
async def _invoke_bedrock_stream(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
# Streaming invocation of Bedrock model
(
system_prompt,
bedrock_messages,
) = self._convert_openai_messages_to_bedrock_format(messages)
system_prompt, bedrock_messages = self._convert_openai_messages_to_bedrock_format(messages)
response = self.client.converse_stream(
modelId=model,
system=system_prompt,
messages=bedrock_messages,
inferenceConfig={"temperature": temperature, "maxTokens": max_tokens},
toolConfig={"tools": tools} if tools else None,
modelId = model,
system = system_prompt,
messages = bedrock_messages,
inferenceConfig = {"temperature": temperature, "maxTokens": max_tokens},
toolConfig = {"tools": tools} if tools else None,
)
# Initialize response structure
bedrock_response = {
"output": {"message": {"role": "", "content": []}},
"stopReason": "",
"usage": {},
"metrics": {},
'output': {
'message': {
'role': '',
'content': []
}
},
'stopReason': '',
'usage': {},
'metrics': {}
}
bedrock_response_text = ""
bedrock_response_tool_input = ""
# Process streaming response
stream = response.get("stream")
stream = response.get('stream')
if stream:
for event in stream:
if event.get("messageStart", {}).get("role"):
bedrock_response["output"]["message"]["role"] = event[
"messageStart"
]["role"]
if event.get("contentBlockDelta", {}).get("delta", {}).get("text"):
bedrock_response_text += event["contentBlockDelta"]["delta"]["text"]
print(
event["contentBlockDelta"]["delta"]["text"], end="", flush=True
)
if event.get("contentBlockStop", {}).get("contentBlockIndex") == 0:
bedrock_response["output"]["message"]["content"].append(
{"text": bedrock_response_text}
)
if event.get("contentBlockStart", {}).get("start", {}).get("toolUse"):
bedrock_tool_use = event["contentBlockStart"]["start"]["toolUse"]
if event.get('messageStart', {}).get('role'):
bedrock_response['output']['message']['role'] = event['messageStart']['role']
if event.get('contentBlockDelta', {}).get('delta', {}).get('text'):
bedrock_response_text += event['contentBlockDelta']['delta']['text']
print(event['contentBlockDelta']['delta']['text'], end='', flush=True)
if event.get('contentBlockStop', {}).get('contentBlockIndex') == 0:
bedrock_response['output']['message']['content'].append({"text": bedrock_response_text})
if event.get('contentBlockStart', {}).get('start', {}).get('toolUse'):
bedrock_tool_use = event['contentBlockStart']['start']['toolUse']
tool_use = {
"toolUseId": bedrock_tool_use["toolUseId"],
"name": bedrock_tool_use["name"],
"toolUseId": bedrock_tool_use['toolUseId'],
"name": bedrock_tool_use['name'],
}
bedrock_response["output"]["message"]["content"].append(
{"toolUse": tool_use}
)
bedrock_response['output']['message']['content'].append({"toolUse": tool_use})
global CURRENT_TOOLUSE_ID
CURRENT_TOOLUSE_ID = bedrock_tool_use["toolUseId"]
if event.get("contentBlockDelta", {}).get("delta", {}).get("toolUse"):
bedrock_response_tool_input += event["contentBlockDelta"]["delta"][
"toolUse"
]["input"]
print(
event["contentBlockDelta"]["delta"]["toolUse"]["input"],
end="",
flush=True,
)
if event.get("contentBlockStop", {}).get("contentBlockIndex") == 1:
bedrock_response["output"]["message"]["content"][1]["toolUse"][
"input"
] = json.loads(bedrock_response_tool_input)
CURRENT_TOOLUSE_ID = bedrock_tool_use['toolUseId']
if event.get('contentBlockDelta', {}).get('delta', {}).get('toolUse'):
bedrock_response_tool_input += event['contentBlockDelta']['delta']['toolUse']['input']
print(event['contentBlockDelta']['delta']['toolUse']['input'], end='', flush=True)
if event.get('contentBlockStop', {}).get('contentBlockIndex') == 1:
bedrock_response['output']['message']['content'][1]['toolUse']['input'] = json.loads(bedrock_response_tool_input)
print()
openai_response = self._convert_bedrock_response_to_openai_format(
bedrock_response
)
openai_response = self._convert_bedrock_response_to_openai_format(bedrock_response)
return openai_response
def create(
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
stream: Optional[bool] = True,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs,
) -> OpenAIResponse:
self,
model: str,
messages: List[Dict[str, str]],
max_tokens: int,
temperature: float,
stream: Optional[bool] = True,
tools: Optional[List[dict]] = None,
tool_choice: Literal["none", "auto", "required"] = "auto",
**kwargs
) -> OpenAIResponse:
# Main entry point for chat completion
bedrock_tools = []
if tools is not None:
bedrock_tools = self._convert_openai_tools_to_bedrock_format(tools)
if stream:
return self._invoke_bedrock_stream(
model,
messages,
max_tokens,
temperature,
bedrock_tools,
tool_choice,
**kwargs,
)
return self._invoke_bedrock_stream(model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs)
else:
return self._invoke_bedrock(
model,
messages,
max_tokens,
temperature,
bedrock_tools,
tool_choice,
**kwargs,
)
return self._invoke_bedrock(model, messages, max_tokens, temperature, bedrock_tools, tool_choice, **kwargs)

View File

@ -37,18 +37,6 @@ class ProxySettings(BaseModel):
class SearchSettings(BaseModel):
engine: str = Field(default="Google", description="Search engine the llm to use")
fallback_engines: List[str] = Field(
default_factory=lambda: ["DuckDuckGo", "Baidu"],
description="Fallback search engines to try if the primary engine fails",
)
retry_delay: int = Field(
default=60,
description="Seconds to wait before retrying all engines again after they all fail",
)
max_retries: int = Field(
default=3,
description="Maximum number of times to retry all engines when all fail",
)
class BrowserSettings(BaseModel):

View File

@ -18,7 +18,6 @@ from tenacity import (
wait_random_exponential,
)
from app.bedrock import BedrockClient
from app.config import LLMSettings, config
from app.exceptions import TokenLimitExceeded
from app.logger import logger # Assuming a logger is set up in your app
@ -29,6 +28,7 @@ from app.schema import (
Message,
ToolChoice,
)
from app.bedrock import BedrockClient
REASONING_MODELS = ["o1", "o3-mini"]

View File

@ -1,19 +1,30 @@
import logging
import sys
logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(sys.stderr)])
import argparse
import asyncio
import atexit
import json
import logging
import os
import sys
from inspect import Parameter, Signature
from typing import Any, Dict, Optional
from mcp.server.fastmcp import FastMCP
from app.logger import logger
# Add directories to Python path (needed for proper importing)
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
root_dir = os.path.dirname(parent_dir)
sys.path.insert(0, parent_dir)
sys.path.insert(0, current_dir)
sys.path.insert(0, root_dir)
# Configure logging (using the same format as original)
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger("mcp-server")
from app.tool.base import BaseTool
from app.tool.bash import Bash
from app.tool.browser_use_tool import BrowserUseTool
@ -34,6 +45,11 @@ class MCPServer:
self.tools["editor"] = StrReplaceEditor()
self.tools["terminate"] = Terminate()
from app.logger import logger as app_logger
global logger
logger = app_logger
def register_tool(self, tool: BaseTool, method_name: Optional[str] = None) -> None:
"""Register a tool with parameter validation and documentation."""
tool_name = method_name or tool.name

View File

@ -4,7 +4,6 @@ from typing import List
from tenacity import retry, stop_after_attempt, wait_exponential
from app.config import config
from app.logger import logger
from app.tool.base import BaseTool
from app.tool.search import (
BaiduSearchEngine,
@ -45,8 +44,6 @@ class WebSearch(BaseTool):
async def execute(self, query: str, num_results: int = 10) -> List[str]:
"""
Execute a Web search and return a list of URLs.
Tries engines in order based on configuration, falling back if an engine fails with errors.
If all engines fail, it will wait and retry up to the configured number of times.
Args:
query (str): The search query to submit to the search engine.
@ -55,109 +52,37 @@ class WebSearch(BaseTool):
Returns:
List[str]: A list of URLs matching the search query.
"""
# Get retry settings from config
retry_delay = 60 # Default to 60 seconds
max_retries = 3 # Default to 3 retries
if config.search_config:
retry_delay = getattr(config.search_config, "retry_delay", 60)
max_retries = getattr(config.search_config, "max_retries", 3)
# Try searching with retries when all engines fail
for retry_count in range(
max_retries + 1
): # +1 because first try is not a retry
links = await self._try_all_engines(query, num_results)
if links:
return links
if retry_count < max_retries:
# All engines failed, wait and retry
logger.warning(
f"All search engines failed. Waiting {retry_delay} seconds before retry {retry_count + 1}/{max_retries}..."
)
await asyncio.sleep(retry_delay)
else:
logger.error(
f"All search engines failed after {max_retries} retries. Giving up."
)
return []
async def _try_all_engines(self, query: str, num_results: int) -> List[str]:
"""
Try all search engines in the configured order.
Args:
query (str): The search query to submit to the search engine.
num_results (int): The number of search results to return.
Returns:
List[str]: A list of URLs matching the search query, or empty list if all engines fail.
"""
engine_order = self._get_engine_order()
failed_engines = []
for engine_name in engine_order:
engine = self._search_engine[engine_name]
try:
logger.info(f"🔎 Attempting search with {engine_name.capitalize()}...")
links = await self._perform_search_with_engine(
engine, query, num_results
)
if links:
if failed_engines:
logger.info(
f"Search successful with {engine_name.capitalize()} after trying: {', '.join(failed_engines)}"
)
return links
except Exception as e:
failed_engines.append(engine_name.capitalize())
is_rate_limit = "429" in str(e) or "Too Many Requests" in str(e)
if is_rate_limit:
logger.warning(
f"⚠️ {engine_name.capitalize()} search engine rate limit exceeded, trying next engine..."
)
else:
logger.warning(
f"⚠️ {engine_name.capitalize()} search failed with error: {e}"
)
if failed_engines:
logger.error(f"All search engines failed: {', '.join(failed_engines)}")
print(f"Search engine '{engine_name}' failed with error: {e}")
return []
def _get_engine_order(self) -> List[str]:
"""
Determines the order in which to try search engines.
Preferred engine is first (based on configuration), followed by fallback engines,
and then the remaining engines.
Preferred engine is first (based on configuration), followed by the remaining engines.
Returns:
List[str]: Ordered list of search engine names.
"""
preferred = "google"
fallbacks = []
if config.search_config:
if config.search_config.engine:
preferred = config.search_config.engine.lower()
if config.search_config.fallback_engines:
fallbacks = [
engine.lower() for engine in config.search_config.fallback_engines
]
if config.search_config and config.search_config.engine:
preferred = config.search_config.engine.lower()
engine_order = []
# Add preferred engine first
if preferred in self._search_engine:
engine_order.append(preferred)
# Add configured fallback engines in order
for fallback in fallbacks:
if fallback in self._search_engine and fallback not in engine_order:
engine_order.append(fallback)
for key in self._search_engine:
if key not in engine_order:
engine_order.append(key)
return engine_order
@retry(

View File

@ -73,13 +73,6 @@ temperature = 0.0 # Controls randomness for vision mod
# [search]
# Search engine for agent to use. Default is "Google", can be set to "Baidu" or "DuckDuckGo".
#engine = "Google"
# Fallback engine order. Default is ["DuckDuckGo", "Baidu"] - will try in this order after primary engine fails.
#fallback_engines = ["DuckDuckGo", "Baidu"]
# Seconds to wait before retrying all engines again when they all fail due to rate limits. Default is 60.
#retry_delay = 60
# Maximum number of times to retry all engines when all fail. Default is 3.
#max_retries = 3
## Sandbox configuration
#[sandbox]

View File

@ -13,14 +13,10 @@ class MCPRunner:
def __init__(self):
self.root_path = config.root_path
self.server_reference = "app.mcp.server"
self.server_script = self.root_path / "app" / "mcp" / "server.py"
self.agent = MCPAgent()
async def initialize(
self,
connection_type: str,
server_url: str | None = None,
) -> None:
async def initialize(self, connection_type: str, server_url: str = None) -> None:
"""Initialize the MCP agent with the appropriate connection."""
logger.info(f"Initializing MCPAgent with {connection_type} connection...")
@ -28,7 +24,7 @@ class MCPRunner:
await self.agent.initialize(
connection_type="stdio",
command=sys.executable,
args=["-m", self.server_reference],
args=[str(self.server_script)],
)
else: # sse
await self.agent.initialize(connection_type="sse", server_url=server_url)
@ -51,14 +47,9 @@ class MCPRunner:
async def run_default(self) -> None:
"""Run the agent in default mode."""
prompt = input("Enter your prompt: ")
if not prompt.strip():
logger.warning("Empty prompt provided.")
return
logger.warning("Processing your request...")
await self.agent.run(prompt)
logger.info("Request processing completed.")
await self.agent.run(
"Hello, what tools are available to me? Terminate after you have listed the tools."
)
async def cleanup(self) -> None:
"""Clean up agent resources."""

View File

@ -1,11 +0,0 @@
# coding: utf-8
# A shortcut to launch OpenManus MCP server, where its introduction also solves other import issues.
from app.mcp.server import MCPServer, parse_args
if __name__ == "__main__":
args = parse_args()
# Create and run server (maintaining original flow)
server = MCPServer()
server.run(transport=args.transport)