103 lines
3.1 KiB
Python
103 lines
3.1 KiB
Python
import threading
|
|
import tomllib
|
|
from pathlib import Path
|
|
from typing import Dict
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
def get_project_root() -> Path:
|
|
"""Get the project root directory"""
|
|
return Path(__file__).resolve().parent.parent
|
|
|
|
|
|
PROJECT_ROOT = get_project_root()
|
|
WORKSPACE_ROOT = PROJECT_ROOT / "workspace"
|
|
|
|
|
|
class LLMSettings(BaseModel):
|
|
model: str = Field(..., description="Model name")
|
|
base_url: str = Field(..., description="API base URL")
|
|
api_key: str = Field(..., description="API key")
|
|
max_tokens: int = Field(4096, description="Maximum number of tokens per request")
|
|
temperature: float = Field(1.0, description="Sampling temperature")
|
|
api_type: str = Field(..., description="AzureOpenai or Openai")
|
|
api_version: str = Field(..., description="Azure Openai version if AzureOpenai")
|
|
|
|
|
|
class AppConfig(BaseModel):
|
|
llm: Dict[str, LLMSettings]
|
|
|
|
|
|
class Config:
|
|
_instance = None
|
|
_lock = threading.Lock()
|
|
_initialized = False
|
|
|
|
def __new__(cls):
|
|
if cls._instance is None:
|
|
with cls._lock:
|
|
if cls._instance is None:
|
|
cls._instance = super().__new__(cls)
|
|
return cls._instance
|
|
|
|
def __init__(self):
|
|
if not self._initialized:
|
|
with self._lock:
|
|
if not self._initialized:
|
|
self._config = None
|
|
self._load_initial_config()
|
|
self._initialized = True
|
|
|
|
@staticmethod
|
|
def _get_config_path() -> Path:
|
|
root = PROJECT_ROOT
|
|
config_path = root / "config" / "config.toml"
|
|
if config_path.exists():
|
|
return config_path
|
|
example_path = root / "config" / "config.example.toml"
|
|
if example_path.exists():
|
|
return example_path
|
|
raise FileNotFoundError("No configuration file found in config directory")
|
|
|
|
def _load_config(self) -> dict:
|
|
config_path = self._get_config_path()
|
|
with config_path.open("rb") as f:
|
|
return tomllib.load(f)
|
|
|
|
def _load_initial_config(self):
|
|
raw_config = self._load_config()
|
|
base_llm = raw_config.get("llm", {})
|
|
llm_overrides = {
|
|
k: v for k, v in raw_config.get("llm", {}).items() if isinstance(v, dict)
|
|
}
|
|
|
|
default_settings = {
|
|
"model": base_llm.get("model"),
|
|
"base_url": base_llm.get("base_url"),
|
|
"api_key": base_llm.get("api_key"),
|
|
"max_tokens": base_llm.get("max_tokens", 4096),
|
|
"temperature": base_llm.get("temperature", 1.0),
|
|
"api_type": base_llm.get("api_type", ""),
|
|
"api_version": base_llm.get("api_version", ""),
|
|
}
|
|
|
|
config_dict = {
|
|
"llm": {
|
|
"default": default_settings,
|
|
**{
|
|
name: {**default_settings, **override_config}
|
|
for name, override_config in llm_overrides.items()
|
|
},
|
|
}
|
|
}
|
|
|
|
self._config = AppConfig(**config_dict)
|
|
|
|
@property
|
|
def llm(self) -> Dict[str, LLMSettings]:
|
|
return self._config.llm
|
|
|
|
|
|
config = Config()
|