RCV/i18n/locale/zh_SG.json
github-actions[bot] 47a3882b3a
🎨 同步 locale (#1117)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-30 00:02:34 +08:00

125 lines
13 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": ">=3則使用對harvest音高識別的結果使用中值濾波數值為濾波半徑使用可以削弱啞音",
"A模型权重": "A模型權重",
"A模型路径": "A模型路徑",
"B模型路径": "B模型路徑",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0曲線檔案可選一行一個音高代替預設的F0及升降調",
"Index Rate": "Index Rate",
"Onnx导出": "Onnx导出",
"Onnx输出路径": "Onnx输出路径",
"RVC模型路径": "RVC模型路径",
"ckpt处理": "ckpt處理",
"harvest进程数": "harvest進程數",
"index文件路径不可包含中文": "index文件路径不可包含中文",
"pth文件路径不可包含中文": "pth文件路径不可包含中文",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe卡號配置以-分隔輸入使用的不同進程卡號,例如0-0-1使用在卡0上跑2個進程並在卡1上跑1個進程",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "step1填寫實驗配置。實驗數據放在logs下每個實驗一個資料夾需手動輸入實驗名路徑內含實驗配置、日誌、訓練得到的模型檔案。",
"step1:正在处理数据": "step1:正在处理数据",
"step2:正在提取音高&正在提取特征": "step2:正在提取音高&正在提取特征",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "step2a自動遍歷訓練資料夾下所有可解碼成音頻的檔案並進行切片歸一化在實驗目錄下生成2個wav資料夾暫時只支援單人訓練。",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "步驟2b: 使用CPU提取音高(如果模型帶音高), 使用GPU提取特徵(選擇卡號)",
"step3: 填写训练设置, 开始训练模型和索引": "步驟3: 填寫訓練設定, 開始訓練模型和索引",
"step3a:正在训练模型": "step3a:正在训练模型",
"一键训练": "一鍵訓練",
"也可批量输入音频文件, 二选一, 优先读文件夹": "也可批量输入音频文件, 二选一, 优先读文件夹",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "使用UVR5模型進行人聲伴奏分離的批次處理。<br>有效資料夾路徑格式的例子D:\\path\\to\\input\\folder從檔案管理員地址欄複製。<br>模型分為三類:<br>1. 保留人聲選擇這個選項適用於沒有和聲的音訊。它比HP5更好地保留了人聲。它包括兩個內建模型HP2和HP3。HP3可能輕微漏出伴奏但比HP2更好地保留了人聲<br>2. 僅保留主人聲選擇這個選項適用於有和聲的音訊。它可能會削弱主人聲。它包括一個內建模型HP5。<br>3. 消除混響和延遲模型由FoxJoy提供<br>(1) MDX-Net對於立體聲混響的移除是最好的選擇但不能移除單聲道混響<br>&emsp;(234) DeEcho移除延遲效果。Aggressive模式比Normal模式移除得更徹底。DeReverb另外移除混響可以移除單聲道混響但對於高頻重的板式混響移除不乾淨。<br>消除混響/延遲注意事項:<br>1. DeEcho-DeReverb模型的處理時間是其他兩個DeEcho模型的近兩倍<br>2. MDX-Net-Dereverb模型相當慢<br>3. 個人推薦的最乾淨配置是先使用MDX-Net然後使用DeEcho-Aggressive。",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "以-分隔輸入使用的卡號, 例如 0-1-2 使用卡0和卡1和卡2",
"伴奏人声分离&去混响&去回声": "伴奏人聲分離&去混響&去回聲",
"保存名": "儲存名",
"保存的文件名, 默认空为和源文件同名": "儲存的檔案名,預設空為與來源檔案同名",
"保存的模型名不带后缀": "儲存的模型名不帶副檔名",
"保存频率save_every_epoch": "保存頻率save_every_epoch",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "保護清輔音和呼吸聲防止電音撕裂等artifact拉滿0.5不開啟,調低加大保護力度但可能降低索引效果",
"修改": "修改",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "修改模型資訊(僅支援weights資料夾下提取的小模型檔案)",
"停止音频转换": "停止音訊轉換",
"全流程结束!": "全流程结束!",
"刷新音色列表和索引路径": "刷新音色列表和索引路徑",
"加载模型": "載入模型",
"加载预训练底模D路径": "加載預訓練底模D路徑",
"加载预训练底模G路径": "加載預訓練底模G路徑",
"卸载音色省显存": "卸載音色節省 VRAM",
"变调(整数, 半音数量, 升八度12降八度-12)": "變調(整數、半音數量、升八度12降八度-12)",
"后处理重采样至最终采样率0为不进行重采样": "後處理重採樣至最終採樣率0為不進行重採樣",
"否": "否",
"响应阈值": "響應閾值",
"处理数据": "處理資料",
"导出Onnx模型": "导出Onnx模型",
"导出文件格式": "導出檔格式",
"常见问题解答": "常見問題解答",
"常规设置": "一般設定",
"开始音频转换": "開始音訊轉換",
"很遗憾您这没有能用的显卡来支持您训练": "很遗憾您这没有能用的显卡来支持您训练",
"性能设置": "效能設定",
"总训练轮数total_epoch": "總訓練輪數total_epoch",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "批量轉換,輸入待轉換音頻資料夾,或上傳多個音頻檔案,在指定資料夾(默認opt)下輸出轉換的音頻。",
"指定输出主人声文件夹": "指定输出主人声文件夹",
"指定输出文件夹": "指定輸出資料夾",
"指定输出非主人声文件夹": "指定输出非主人声文件夹",
"推理时间(ms):": "推理時間(ms):",
"推理音色": "推理音色",
"提取": "提取",
"提取音高和处理数据使用的CPU进程数": "提取音高和處理數據使用的CPU進程數",
"是": "是",
"是否仅保存最新的ckpt文件以节省硬盘空间": "是否僅保存最新的ckpt檔案以節省硬碟空間",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "是否在每次保存時間點將最終小模型保存至weights檔夾",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": " VRAM10 VRAM ",
"": "",
"MIT, , 使. <br>, 使. <b>LICENSE</b>.": "MIT使<br>使<b>使-LICENSE.txt</b>",
"": "",
"(weights)": "(weights)",
"": "",
"": "",
"": "",
"(logs),,": "(logs)",
"": "",
"(, )": "",
",10": "10",
"": "",
", ": "",
"": "",
"batch_size": "batch_size",
"": "",
"": "",
"": "",
",使": ",使",
"+12key, -12key, . ": "+12key-12key調",
"": "",
"index,(dropdown)": "index,(dropdown)",
"": "",
"": "",
"": "",
"": "",
"": "",
"": "",
", train.log": ", train.log",
"id": "id",
"index": "index",
"pth": "pth",
"id": "ID",
"": "",
"": "",
"": "",
"()": "()",
"()": "",
"1使": "1使",
"": "",
"": "",
"": "",
"": "",
"": "",
"": "",
"(,)": "()",
".index": " .index ",
".pth": " .pth ",
",pm,harvest,crepeGPU": ",pm,harvest,crepeGPU",
",pm,harvest,crepeGPU,rmvpeGPU": ",pm,harvest,crepeGPU,rmvpeGPU",
":pm,CPUdio,harvest,rmvpeCPU/GPU": ":pm,CPUdio,harvest,rmvpeCPU/GPU",
"": "",
"": "",
"": "調",
"(使)": " (使)",
"": "",
"": ""
}