mirror of
				https://git.suyu.dev/suyu/suyu.git
				synced 2025-11-04 20:44:02 +08:00 
			
		
		
		
	Merge pull request #548 from lioncash/nits
Cleanup related to vfp_helper.
This commit is contained in:
		
						commit
						7cc24562b4
					
				@ -773,8 +773,8 @@ void vfp_raise_exceptions(ARMul_State* state, u32 exceptions, u32 inst, u32 fpsc
 | 
			
		||||
     * Comparison instructions always return at least one of
 | 
			
		||||
     * these flags set.
 | 
			
		||||
     */
 | 
			
		||||
    if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
 | 
			
		||||
        fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
 | 
			
		||||
    if (exceptions & (FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG))
 | 
			
		||||
        fpscr &= ~(FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG);
 | 
			
		||||
 | 
			
		||||
    fpscr |= exceptions;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -45,444 +45,403 @@
 | 
			
		||||
 | 
			
		||||
#define do_div(n, base) {n/=base;}
 | 
			
		||||
 | 
			
		||||
/* From vfpinstr.h */
 | 
			
		||||
enum : u32 {
 | 
			
		||||
    FOP_MASK  = 0x00b00040,
 | 
			
		||||
    FOP_FMAC  = 0x00000000,
 | 
			
		||||
    FOP_FNMAC = 0x00000040,
 | 
			
		||||
    FOP_FMSC  = 0x00100000,
 | 
			
		||||
    FOP_FNMSC = 0x00100040,
 | 
			
		||||
    FOP_FMUL  = 0x00200000,
 | 
			
		||||
    FOP_FNMUL = 0x00200040,
 | 
			
		||||
    FOP_FADD  = 0x00300000,
 | 
			
		||||
    FOP_FSUB  = 0x00300040,
 | 
			
		||||
    FOP_FDIV  = 0x00800000,
 | 
			
		||||
    FOP_EXT   = 0x00b00040
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define INST_CPRTDO(inst)	(((inst) & 0x0f000000) == 0x0e000000)
 | 
			
		||||
#define INST_CPRT(inst)		((inst) & (1 << 4))
 | 
			
		||||
#define INST_CPRT_L(inst)	((inst) & (1 << 20))
 | 
			
		||||
#define INST_CPRT_Rd(inst)	(((inst) & (15 << 12)) >> 12)
 | 
			
		||||
#define INST_CPRT_OP(inst)	(((inst) >> 21) & 7)
 | 
			
		||||
#define INST_CPNUM(inst)	((inst) & 0xf00)
 | 
			
		||||
#define CPNUM(cp)		((cp) << 8)
 | 
			
		||||
#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
 | 
			
		||||
 | 
			
		||||
#define FOP_MASK	(0x00b00040)
 | 
			
		||||
#define FOP_FMAC	(0x00000000)
 | 
			
		||||
#define FOP_FNMAC	(0x00000040)
 | 
			
		||||
#define FOP_FMSC	(0x00100000)
 | 
			
		||||
#define FOP_FNMSC	(0x00100040)
 | 
			
		||||
#define FOP_FMUL	(0x00200000)
 | 
			
		||||
#define FOP_FNMUL	(0x00200040)
 | 
			
		||||
#define FOP_FADD	(0x00300000)
 | 
			
		||||
#define FOP_FSUB	(0x00300040)
 | 
			
		||||
#define FOP_FDIV	(0x00800000)
 | 
			
		||||
#define FOP_EXT		(0x00b00040)
 | 
			
		||||
enum : u32 {
 | 
			
		||||
    FEXT_MASK   = 0x000f0080,
 | 
			
		||||
    FEXT_FCPY   = 0x00000000,
 | 
			
		||||
    FEXT_FABS   = 0x00000080,
 | 
			
		||||
    FEXT_FNEG   = 0x00010000,
 | 
			
		||||
    FEXT_FSQRT  = 0x00010080,
 | 
			
		||||
    FEXT_FCMP   = 0x00040000,
 | 
			
		||||
    FEXT_FCMPE  = 0x00040080,
 | 
			
		||||
    FEXT_FCMPZ  = 0x00050000,
 | 
			
		||||
    FEXT_FCMPEZ = 0x00050080,
 | 
			
		||||
    FEXT_FCVT   = 0x00070080,
 | 
			
		||||
    FEXT_FUITO  = 0x00080000,
 | 
			
		||||
    FEXT_FSITO  = 0x00080080,
 | 
			
		||||
    FEXT_FTOUI  = 0x000c0000,
 | 
			
		||||
    FEXT_FTOUIZ = 0x000c0080,
 | 
			
		||||
    FEXT_FTOSI  = 0x000d0000,
 | 
			
		||||
    FEXT_FTOSIZ = 0x000d0080
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define FOP_TO_IDX(inst)	((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
 | 
			
		||||
#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
 | 
			
		||||
 | 
			
		||||
#define FEXT_MASK	(0x000f0080)
 | 
			
		||||
#define FEXT_FCPY	(0x00000000)
 | 
			
		||||
#define FEXT_FABS	(0x00000080)
 | 
			
		||||
#define FEXT_FNEG	(0x00010000)
 | 
			
		||||
#define FEXT_FSQRT	(0x00010080)
 | 
			
		||||
#define FEXT_FCMP	(0x00040000)
 | 
			
		||||
#define FEXT_FCMPE	(0x00040080)
 | 
			
		||||
#define FEXT_FCMPZ	(0x00050000)
 | 
			
		||||
#define FEXT_FCMPEZ	(0x00050080)
 | 
			
		||||
#define FEXT_FCVT	(0x00070080)
 | 
			
		||||
#define FEXT_FUITO	(0x00080000)
 | 
			
		||||
#define FEXT_FSITO	(0x00080080)
 | 
			
		||||
#define FEXT_FTOUI	(0x000c0000)
 | 
			
		||||
#define FEXT_FTOUIZ	(0x000c0080)
 | 
			
		||||
#define FEXT_FTOSI	(0x000d0000)
 | 
			
		||||
#define FEXT_FTOSIZ	(0x000d0080)
 | 
			
		||||
#define vfp_get_sd(inst)  ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
 | 
			
		||||
#define vfp_get_dd(inst)  ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
 | 
			
		||||
#define vfp_get_sm(inst)  ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
 | 
			
		||||
#define vfp_get_dm(inst)  ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
 | 
			
		||||
#define vfp_get_sn(inst)  ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
 | 
			
		||||
#define vfp_get_dn(inst)  ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
 | 
			
		||||
 | 
			
		||||
#define FEXT_TO_IDX(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
 | 
			
		||||
 | 
			
		||||
#define vfp_get_sd(inst)	((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
 | 
			
		||||
#define vfp_get_dd(inst)	((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
 | 
			
		||||
#define vfp_get_sm(inst)	((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
 | 
			
		||||
#define vfp_get_dm(inst)	((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
 | 
			
		||||
#define vfp_get_sn(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
 | 
			
		||||
#define vfp_get_dn(inst)	((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
 | 
			
		||||
 | 
			
		||||
#define vfp_single(inst)	(((inst) & 0x0000f00) == 0xa00)
 | 
			
		||||
 | 
			
		||||
#define FPSCR_N	(1 << 31)
 | 
			
		||||
#define FPSCR_Z	(1 << 30)
 | 
			
		||||
#define FPSCR_C (1 << 29)
 | 
			
		||||
#define FPSCR_V	(1 << 28)
 | 
			
		||||
#define vfp_single(inst)  (((inst) & 0x0000f00) == 0xa00)
 | 
			
		||||
 | 
			
		||||
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
 | 
			
		||||
{
 | 
			
		||||
	if (shift) {
 | 
			
		||||
		if (shift < 32)
 | 
			
		||||
			val = val >> shift | ((val << (32 - shift)) != 0);
 | 
			
		||||
		else
 | 
			
		||||
			val = val != 0;
 | 
			
		||||
	}
 | 
			
		||||
	return val;
 | 
			
		||||
    if (shift) {
 | 
			
		||||
        if (shift < 32)
 | 
			
		||||
            val = val >> shift | ((val << (32 - shift)) != 0);
 | 
			
		||||
        else
 | 
			
		||||
            val = val != 0;
 | 
			
		||||
    }
 | 
			
		||||
    return val;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
 | 
			
		||||
{
 | 
			
		||||
	if (shift) {
 | 
			
		||||
		if (shift < 64)
 | 
			
		||||
			val = val >> shift | ((val << (64 - shift)) != 0);
 | 
			
		||||
		else
 | 
			
		||||
			val = val != 0;
 | 
			
		||||
	}
 | 
			
		||||
	return val;
 | 
			
		||||
    if (shift) {
 | 
			
		||||
        if (shift < 64)
 | 
			
		||||
            val = val >> shift | ((val << (64 - shift)) != 0);
 | 
			
		||||
        else
 | 
			
		||||
            val = val != 0;
 | 
			
		||||
    }
 | 
			
		||||
    return val;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline u32 vfp_hi64to32jamming(u64 val)
 | 
			
		||||
{
 | 
			
		||||
	u32 v;
 | 
			
		||||
	u32 highval = val >> 32;
 | 
			
		||||
	u32 lowval = val & 0xffffffff;
 | 
			
		||||
    u32 v;
 | 
			
		||||
    u32 highval = val >> 32;
 | 
			
		||||
    u32 lowval = val & 0xffffffff;
 | 
			
		||||
 | 
			
		||||
	if (lowval >= 1)
 | 
			
		||||
		v = highval | 1;
 | 
			
		||||
	else
 | 
			
		||||
		v = highval;
 | 
			
		||||
    if (lowval >= 1)
 | 
			
		||||
        v = highval | 1;
 | 
			
		||||
    else
 | 
			
		||||
        v = highval;
 | 
			
		||||
 | 
			
		||||
	return v;
 | 
			
		||||
    return v;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | 
			
		||||
static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | 
			
		||||
{
 | 
			
		||||
	*resl = nl + ml;
 | 
			
		||||
	*resh = nh + mh;
 | 
			
		||||
	if (*resl < nl)
 | 
			
		||||
		*resh += 1;
 | 
			
		||||
    *resl = nl + ml;
 | 
			
		||||
    *resh = nh + mh;
 | 
			
		||||
    if (*resl < nl)
 | 
			
		||||
        *resh += 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | 
			
		||||
static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | 
			
		||||
{
 | 
			
		||||
	*resl = nl - ml;
 | 
			
		||||
	*resh = nh - mh;
 | 
			
		||||
	if (*resl > nl)
 | 
			
		||||
		*resh -= 1;
 | 
			
		||||
    *resl = nl - ml;
 | 
			
		||||
    *resh = nh - mh;
 | 
			
		||||
    if (*resl > nl)
 | 
			
		||||
        *resh -= 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
 | 
			
		||||
static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m)
 | 
			
		||||
{
 | 
			
		||||
	u32 nh, nl, mh, ml;
 | 
			
		||||
	u64 rh, rma, rmb, rl;
 | 
			
		||||
    u32 nh, nl, mh, ml;
 | 
			
		||||
    u64 rh, rma, rmb, rl;
 | 
			
		||||
 | 
			
		||||
	nl = n;
 | 
			
		||||
	ml = m;
 | 
			
		||||
	rl = (u64)nl * ml;
 | 
			
		||||
    nl = n;
 | 
			
		||||
    ml = m;
 | 
			
		||||
    rl = (u64)nl * ml;
 | 
			
		||||
 | 
			
		||||
	nh = n >> 32;
 | 
			
		||||
	rma = (u64)nh * ml;
 | 
			
		||||
    nh = n >> 32;
 | 
			
		||||
    rma = (u64)nh * ml;
 | 
			
		||||
 | 
			
		||||
	mh = m >> 32;
 | 
			
		||||
	rmb = (u64)nl * mh;
 | 
			
		||||
	rma += rmb;
 | 
			
		||||
    mh = m >> 32;
 | 
			
		||||
    rmb = (u64)nl * mh;
 | 
			
		||||
    rma += rmb;
 | 
			
		||||
 | 
			
		||||
	rh = (u64)nh * mh;
 | 
			
		||||
	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
 | 
			
		||||
    rh = (u64)nh * mh;
 | 
			
		||||
    rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
 | 
			
		||||
 | 
			
		||||
	rma <<= 32;
 | 
			
		||||
	rl += rma;
 | 
			
		||||
	rh += (rl < rma);
 | 
			
		||||
    rma <<= 32;
 | 
			
		||||
    rl += rma;
 | 
			
		||||
    rh += (rl < rma);
 | 
			
		||||
 | 
			
		||||
	*resl = rl;
 | 
			
		||||
	*resh = rh;
 | 
			
		||||
    *resl = rl;
 | 
			
		||||
    *resh = rh;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void shift64left(u64 *resh, u64 *resl, u64 n)
 | 
			
		||||
static inline void shift64left(u64* resh, u64* resl, u64 n)
 | 
			
		||||
{
 | 
			
		||||
	*resh = n >> 63;
 | 
			
		||||
	*resl = n << 1;
 | 
			
		||||
    *resh = n >> 63;
 | 
			
		||||
    *resl = n << 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline u64 vfp_hi64multiply64(u64 n, u64 m)
 | 
			
		||||
{
 | 
			
		||||
	u64 rh, rl;
 | 
			
		||||
	mul64to128(&rh, &rl, n, m);
 | 
			
		||||
	return rh | (rl != 0);
 | 
			
		||||
    u64 rh, rl;
 | 
			
		||||
    mul64to128(&rh, &rl, n, m);
 | 
			
		||||
    return rh | (rl != 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
 | 
			
		||||
{
 | 
			
		||||
	u64 mh, ml, remh, reml, termh, terml, z;
 | 
			
		||||
    u64 mh, ml, remh, reml, termh, terml, z;
 | 
			
		||||
 | 
			
		||||
	if (nh >= m)
 | 
			
		||||
		return ~0ULL;
 | 
			
		||||
	mh = m >> 32;
 | 
			
		||||
	if (mh << 32 <= nh) {
 | 
			
		||||
		z = 0xffffffff00000000ULL;
 | 
			
		||||
	} else {
 | 
			
		||||
		z = nh;
 | 
			
		||||
		do_div(z, mh);
 | 
			
		||||
		z <<= 32;
 | 
			
		||||
	}
 | 
			
		||||
	mul64to128(&termh, &terml, m, z);
 | 
			
		||||
	sub128(&remh, &reml, nh, nl, termh, terml);
 | 
			
		||||
	ml = m << 32;
 | 
			
		||||
	while ((s64)remh < 0) {
 | 
			
		||||
		z -= 0x100000000ULL;
 | 
			
		||||
		add128(&remh, &reml, remh, reml, mh, ml);
 | 
			
		||||
	}
 | 
			
		||||
	remh = (remh << 32) | (reml >> 32);
 | 
			
		||||
	if (mh << 32 <= remh) {
 | 
			
		||||
		z |= 0xffffffff;
 | 
			
		||||
	} else {
 | 
			
		||||
		do_div(remh, mh);
 | 
			
		||||
		z |= remh;
 | 
			
		||||
	}
 | 
			
		||||
	return z;
 | 
			
		||||
    if (nh >= m)
 | 
			
		||||
        return ~0ULL;
 | 
			
		||||
    mh = m >> 32;
 | 
			
		||||
    if (mh << 32 <= nh) {
 | 
			
		||||
        z = 0xffffffff00000000ULL;
 | 
			
		||||
    } else {
 | 
			
		||||
        z = nh;
 | 
			
		||||
        do_div(z, mh);
 | 
			
		||||
        z <<= 32;
 | 
			
		||||
    }
 | 
			
		||||
    mul64to128(&termh, &terml, m, z);
 | 
			
		||||
    sub128(&remh, &reml, nh, nl, termh, terml);
 | 
			
		||||
    ml = m << 32;
 | 
			
		||||
    while ((s64)remh < 0) {
 | 
			
		||||
        z -= 0x100000000ULL;
 | 
			
		||||
        add128(&remh, &reml, remh, reml, mh, ml);
 | 
			
		||||
    }
 | 
			
		||||
    remh = (remh << 32) | (reml >> 32);
 | 
			
		||||
    if (mh << 32 <= remh) {
 | 
			
		||||
        z |= 0xffffffff;
 | 
			
		||||
    } else {
 | 
			
		||||
        do_div(remh, mh);
 | 
			
		||||
        z |= remh;
 | 
			
		||||
    }
 | 
			
		||||
    return z;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Operations on unpacked elements
 | 
			
		||||
 */
 | 
			
		||||
#define vfp_sign_negate(sign)	(sign ^ 0x8000)
 | 
			
		||||
// Operations on unpacked elements
 | 
			
		||||
#define vfp_sign_negate(sign) (sign ^ 0x8000)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Single-precision
 | 
			
		||||
 */
 | 
			
		||||
// Single-precision
 | 
			
		||||
struct vfp_single {
 | 
			
		||||
	s16	exponent;
 | 
			
		||||
	u16	sign;
 | 
			
		||||
	u32	significand;
 | 
			
		||||
    s16	exponent;
 | 
			
		||||
    u16	sign;
 | 
			
		||||
    u32	significand;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 | 
			
		||||
 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 | 
			
		||||
 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 | 
			
		||||
 *  which are not propagated to the float upon packing.
 | 
			
		||||
 */
 | 
			
		||||
#define VFP_SINGLE_MANTISSA_BITS	(23)
 | 
			
		||||
#define VFP_SINGLE_EXPONENT_BITS	(8)
 | 
			
		||||
#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
 | 
			
		||||
#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
 | 
			
		||||
// VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 | 
			
		||||
// VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 | 
			
		||||
// VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 | 
			
		||||
// which are not propagated to the float upon packing.
 | 
			
		||||
#define VFP_SINGLE_MANTISSA_BITS (23)
 | 
			
		||||
#define VFP_SINGLE_EXPONENT_BITS (8)
 | 
			
		||||
#define VFP_SINGLE_LOW_BITS      (32 - VFP_SINGLE_MANTISSA_BITS - 2)
 | 
			
		||||
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The bit in an unpacked float which indicates that it is a quiet NaN
 | 
			
		||||
 */
 | 
			
		||||
// The bit in an unpacked float which indicates that it is a quiet NaN
 | 
			
		||||
#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Operations on packed single-precision numbers
 | 
			
		||||
 */
 | 
			
		||||
#define vfp_single_packed_sign(v)	((v) & 0x80000000)
 | 
			
		||||
#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
 | 
			
		||||
#define vfp_single_packed_abs(v)	((v) & ~0x80000000)
 | 
			
		||||
#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 | 
			
		||||
#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 | 
			
		||||
// Operations on packed single-precision numbers
 | 
			
		||||
#define vfp_single_packed_sign(v)     ((v) & 0x80000000)
 | 
			
		||||
#define vfp_single_packed_negate(v)   ((v) ^ 0x80000000)
 | 
			
		||||
#define vfp_single_packed_abs(v)      ((v) & ~0x80000000)
 | 
			
		||||
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 | 
			
		||||
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Unpack a single-precision float.  Note that this returns the magnitude
 | 
			
		||||
 * of the single-precision float mantissa with the 1. if necessary,
 | 
			
		||||
 * aligned to bit 30.
 | 
			
		||||
 */
 | 
			
		||||
static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
 | 
			
		||||
// Unpack a single-precision float.  Note that this returns the magnitude
 | 
			
		||||
// of the single-precision float mantissa with the 1. if necessary,
 | 
			
		||||
// aligned to bit 30.
 | 
			
		||||
static inline void vfp_single_unpack(vfp_single* s, s32 val)
 | 
			
		||||
{
 | 
			
		||||
	u32 significand;
 | 
			
		||||
    u32 significand;
 | 
			
		||||
 | 
			
		||||
	s->sign = vfp_single_packed_sign(val) >> 16,
 | 
			
		||||
	s->exponent = vfp_single_packed_exponent(val);
 | 
			
		||||
    s->sign = vfp_single_packed_sign(val) >> 16,
 | 
			
		||||
    s->exponent = vfp_single_packed_exponent(val);
 | 
			
		||||
 | 
			
		||||
	significand = (u32) val;
 | 
			
		||||
	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 | 
			
		||||
	if (s->exponent && s->exponent != 255)
 | 
			
		||||
		significand |= 0x40000000;
 | 
			
		||||
	s->significand = significand;
 | 
			
		||||
    significand = (u32) val;
 | 
			
		||||
    significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 | 
			
		||||
    if (s->exponent && s->exponent != 255)
 | 
			
		||||
        significand |= 0x40000000;
 | 
			
		||||
    s->significand = significand;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Re-pack a single-precision float.  This assumes that the float is
 | 
			
		||||
 * already normalised such that the MSB is bit 30, _not_ bit 31.
 | 
			
		||||
 */
 | 
			
		||||
static inline s32 vfp_single_pack(struct vfp_single *s)
 | 
			
		||||
// Re-pack a single-precision float.  This assumes that the float is
 | 
			
		||||
// already normalised such that the MSB is bit 30, _not_ bit 31.
 | 
			
		||||
static inline s32 vfp_single_pack(vfp_single* s)
 | 
			
		||||
{
 | 
			
		||||
	u32 val;
 | 
			
		||||
	val = (s->sign << 16) +
 | 
			
		||||
	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 | 
			
		||||
	      (s->significand >> VFP_SINGLE_LOW_BITS);
 | 
			
		||||
	return (s32)val;
 | 
			
		||||
    u32 val = (s->sign << 16) +
 | 
			
		||||
              (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 | 
			
		||||
              (s->significand >> VFP_SINGLE_LOW_BITS);
 | 
			
		||||
    return (s32)val;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define VFP_NUMBER		(1<<0)
 | 
			
		||||
#define VFP_ZERO		(1<<1)
 | 
			
		||||
#define VFP_DENORMAL		(1<<2)
 | 
			
		||||
#define VFP_INFINITY		(1<<3)
 | 
			
		||||
#define VFP_NAN			(1<<4)
 | 
			
		||||
#define VFP_NAN_SIGNAL		(1<<5)
 | 
			
		||||
enum : u32 {
 | 
			
		||||
    VFP_NUMBER     = (1 << 0),
 | 
			
		||||
    VFP_ZERO       = (1 << 1),
 | 
			
		||||
    VFP_DENORMAL   = (1 << 2),
 | 
			
		||||
    VFP_INFINITY   = (1 << 3),
 | 
			
		||||
    VFP_NAN        = (1 << 4),
 | 
			
		||||
    VFP_NAN_SIGNAL = (1 << 5),
 | 
			
		||||
 | 
			
		||||
#define VFP_QNAN		(VFP_NAN)
 | 
			
		||||
#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
 | 
			
		||||
 | 
			
		||||
static inline int vfp_single_type(struct vfp_single *s)
 | 
			
		||||
{
 | 
			
		||||
	int type = VFP_NUMBER;
 | 
			
		||||
	if (s->exponent == 255) {
 | 
			
		||||
		if (s->significand == 0)
 | 
			
		||||
			type = VFP_INFINITY;
 | 
			
		||||
		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 | 
			
		||||
			type = VFP_QNAN;
 | 
			
		||||
		else
 | 
			
		||||
			type = VFP_SNAN;
 | 
			
		||||
	} else if (s->exponent == 0) {
 | 
			
		||||
		if (s->significand == 0)
 | 
			
		||||
			type |= VFP_ZERO;
 | 
			
		||||
		else
 | 
			
		||||
			type |= VFP_DENORMAL;
 | 
			
		||||
	}
 | 
			
		||||
	return type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Double-precision
 | 
			
		||||
 */
 | 
			
		||||
struct vfp_double {
 | 
			
		||||
	s16	exponent;
 | 
			
		||||
	u16	sign;
 | 
			
		||||
	u64	significand;
 | 
			
		||||
    VFP_QNAN       = (VFP_NAN),
 | 
			
		||||
    VFP_SNAN       = (VFP_NAN|VFP_NAN_SIGNAL)
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * VFP_REG_ZERO is a special register number for vfp_get_double
 | 
			
		||||
 * which returns (double)0.0.  This is useful for the compare with
 | 
			
		||||
 * zero instructions.
 | 
			
		||||
 */
 | 
			
		||||
static inline int vfp_single_type(vfp_single* s)
 | 
			
		||||
{
 | 
			
		||||
    int type = VFP_NUMBER;
 | 
			
		||||
    if (s->exponent == 255) {
 | 
			
		||||
        if (s->significand == 0)
 | 
			
		||||
            type = VFP_INFINITY;
 | 
			
		||||
        else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 | 
			
		||||
            type = VFP_QNAN;
 | 
			
		||||
        else
 | 
			
		||||
            type = VFP_SNAN;
 | 
			
		||||
    } else if (s->exponent == 0) {
 | 
			
		||||
        if (s->significand == 0)
 | 
			
		||||
            type |= VFP_ZERO;
 | 
			
		||||
        else
 | 
			
		||||
            type |= VFP_DENORMAL;
 | 
			
		||||
    }
 | 
			
		||||
    return type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func);
 | 
			
		||||
 | 
			
		||||
// Double-precision
 | 
			
		||||
struct vfp_double {
 | 
			
		||||
    s16	exponent;
 | 
			
		||||
    u16	sign;
 | 
			
		||||
    u64	significand;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// VFP_REG_ZERO is a special register number for vfp_get_double
 | 
			
		||||
// which returns (double)0.0.  This is useful for the compare with
 | 
			
		||||
// zero instructions.
 | 
			
		||||
#ifdef CONFIG_VFPv3
 | 
			
		||||
#define VFP_REG_ZERO	32
 | 
			
		||||
#define VFP_REG_ZERO 32
 | 
			
		||||
#else
 | 
			
		||||
#define VFP_REG_ZERO	16
 | 
			
		||||
#define VFP_REG_ZERO 16
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define VFP_DOUBLE_MANTISSA_BITS	(52)
 | 
			
		||||
#define VFP_DOUBLE_EXPONENT_BITS	(11)
 | 
			
		||||
#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 | 
			
		||||
#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
 | 
			
		||||
#define VFP_DOUBLE_MANTISSA_BITS (52)
 | 
			
		||||
#define VFP_DOUBLE_EXPONENT_BITS (11)
 | 
			
		||||
#define VFP_DOUBLE_LOW_BITS      (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 | 
			
		||||
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The bit in an unpacked double which indicates that it is a quiet NaN
 | 
			
		||||
 */
 | 
			
		||||
#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 | 
			
		||||
// The bit in an unpacked double which indicates that it is a quiet NaN
 | 
			
		||||
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Operations on packed single-precision numbers
 | 
			
		||||
 */
 | 
			
		||||
#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 | 
			
		||||
#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 | 
			
		||||
// Operations on packed single-precision numbers
 | 
			
		||||
#define vfp_double_packed_sign(v)     ((v) & (1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_negate(v)   ((v) ^ (1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_abs(v)      ((v) & ~(1ULL << 63))
 | 
			
		||||
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 | 
			
		||||
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Unpack a double-precision float.  Note that this returns the magnitude
 | 
			
		||||
 * of the double-precision float mantissa with the 1. if necessary,
 | 
			
		||||
 * aligned to bit 62.
 | 
			
		||||
 */
 | 
			
		||||
static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
 | 
			
		||||
// Unpack a double-precision float.  Note that this returns the magnitude
 | 
			
		||||
// of the double-precision float mantissa with the 1. if necessary,
 | 
			
		||||
// aligned to bit 62.
 | 
			
		||||
static inline void vfp_double_unpack(vfp_double* s, s64 val)
 | 
			
		||||
{
 | 
			
		||||
	u64 significand;
 | 
			
		||||
    u64 significand;
 | 
			
		||||
 | 
			
		||||
	s->sign = vfp_double_packed_sign(val) >> 48;
 | 
			
		||||
	s->exponent = vfp_double_packed_exponent(val);
 | 
			
		||||
    s->sign = vfp_double_packed_sign(val) >> 48;
 | 
			
		||||
    s->exponent = vfp_double_packed_exponent(val);
 | 
			
		||||
 | 
			
		||||
	significand = (u64) val;
 | 
			
		||||
	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 | 
			
		||||
	if (s->exponent && s->exponent != 2047)
 | 
			
		||||
		significand |= (1ULL << 62);
 | 
			
		||||
	s->significand = significand;
 | 
			
		||||
    significand = (u64) val;
 | 
			
		||||
    significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 | 
			
		||||
    if (s->exponent && s->exponent != 2047)
 | 
			
		||||
        significand |= (1ULL << 62);
 | 
			
		||||
    s->significand = significand;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Re-pack a double-precision float.  This assumes that the float is
 | 
			
		||||
 * already normalised such that the MSB is bit 30, _not_ bit 31.
 | 
			
		||||
 */
 | 
			
		||||
static inline s64 vfp_double_pack(struct vfp_double *s)
 | 
			
		||||
// Re-pack a double-precision float.  This assumes that the float is
 | 
			
		||||
// already normalised such that the MSB is bit 30, _not_ bit 31.
 | 
			
		||||
static inline s64 vfp_double_pack(vfp_double* s)
 | 
			
		||||
{
 | 
			
		||||
	u64 val;
 | 
			
		||||
	val = ((u64)s->sign << 48) +
 | 
			
		||||
	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
 | 
			
		||||
	      (s->significand >> VFP_DOUBLE_LOW_BITS);
 | 
			
		||||
	return (s64)val;
 | 
			
		||||
    u64 val = ((u64)s->sign << 48) +
 | 
			
		||||
              ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
 | 
			
		||||
              (s->significand >> VFP_DOUBLE_LOW_BITS);
 | 
			
		||||
    return (s64)val;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline int vfp_double_type(struct vfp_double *s)
 | 
			
		||||
static inline int vfp_double_type(vfp_double* s)
 | 
			
		||||
{
 | 
			
		||||
	int type = VFP_NUMBER;
 | 
			
		||||
	if (s->exponent == 2047) {
 | 
			
		||||
		if (s->significand == 0)
 | 
			
		||||
			type = VFP_INFINITY;
 | 
			
		||||
		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
 | 
			
		||||
			type = VFP_QNAN;
 | 
			
		||||
		else
 | 
			
		||||
			type = VFP_SNAN;
 | 
			
		||||
	} else if (s->exponent == 0) {
 | 
			
		||||
		if (s->significand == 0)
 | 
			
		||||
			type |= VFP_ZERO;
 | 
			
		||||
		else
 | 
			
		||||
			type |= VFP_DENORMAL;
 | 
			
		||||
	}
 | 
			
		||||
	return type;
 | 
			
		||||
    int type = VFP_NUMBER;
 | 
			
		||||
    if (s->exponent == 2047) {
 | 
			
		||||
        if (s->significand == 0)
 | 
			
		||||
            type = VFP_INFINITY;
 | 
			
		||||
        else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
 | 
			
		||||
            type = VFP_QNAN;
 | 
			
		||||
        else
 | 
			
		||||
            type = VFP_SNAN;
 | 
			
		||||
    } else if (s->exponent == 0) {
 | 
			
		||||
        if (s->significand == 0)
 | 
			
		||||
            type |= VFP_ZERO;
 | 
			
		||||
        else
 | 
			
		||||
            type |= VFP_DENORMAL;
 | 
			
		||||
    }
 | 
			
		||||
    return type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
 | 
			
		||||
u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);
 | 
			
		||||
 | 
			
		||||
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * A special flag to tell the normalisation code not to normalise.
 | 
			
		||||
 */
 | 
			
		||||
#define VFP_NAN_FLAG	0x100
 | 
			
		||||
// A special flag to tell the normalisation code not to normalise.
 | 
			
		||||
#define VFP_NAN_FLAG 0x100
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * A bit pattern used to indicate the initial (unset) value of the
 | 
			
		||||
 * exception mask, in case nothing handles an instruction.  This
 | 
			
		||||
 * doesn't include the NAN flag, which get masked out before
 | 
			
		||||
 * we check for an error.
 | 
			
		||||
 */
 | 
			
		||||
#define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
 | 
			
		||||
// A bit pattern used to indicate the initial (unset) value of the
 | 
			
		||||
// exception mask, in case nothing handles an instruction.  This
 | 
			
		||||
// doesn't include the NAN flag, which get masked out before
 | 
			
		||||
// we check for an error.
 | 
			
		||||
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * A flag to tell vfp instruction type.
 | 
			
		||||
 *  OP_SCALAR - this operation always operates in scalar mode
 | 
			
		||||
 *  OP_SD - the instruction exceptionally writes to a single precision result.
 | 
			
		||||
 *  OP_DD - the instruction exceptionally writes to a double precision result.
 | 
			
		||||
 *  OP_SM - the instruction exceptionally reads from a single precision operand.
 | 
			
		||||
 */
 | 
			
		||||
#define OP_SCALAR	(1 << 0)
 | 
			
		||||
#define OP_SD		(1 << 1)
 | 
			
		||||
#define OP_DD		(1 << 1)
 | 
			
		||||
#define OP_SM		(1 << 2)
 | 
			
		||||
// A flag to tell vfp instruction type.
 | 
			
		||||
//  OP_SCALAR - This operation always operates in scalar mode
 | 
			
		||||
//  OP_SD     - The instruction exceptionally writes to a single precision result.
 | 
			
		||||
//  OP_DD     - The instruction exceptionally writes to a double precision result.
 | 
			
		||||
//  OP_SM     - The instruction exceptionally reads from a single precision operand.
 | 
			
		||||
enum : u32 {
 | 
			
		||||
    OP_SCALAR = (1 << 0),
 | 
			
		||||
    OP_SD     = (1 << 1),
 | 
			
		||||
    OP_DD     = (1 << 1),
 | 
			
		||||
    OP_SM     = (1 << 2)
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct op {
 | 
			
		||||
	u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr);
 | 
			
		||||
	u32 flags;
 | 
			
		||||
    u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr);
 | 
			
		||||
    u32 flags;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static inline u32 fls(ARMword x)
 | 
			
		||||
{
 | 
			
		||||
	int r = 32;
 | 
			
		||||
    int r = 32;
 | 
			
		||||
 | 
			
		||||
	if (!x)
 | 
			
		||||
		return 0;
 | 
			
		||||
	if (!(x & 0xffff0000u)) {
 | 
			
		||||
		x <<= 16;
 | 
			
		||||
		r -= 16;
 | 
			
		||||
	}
 | 
			
		||||
	if (!(x & 0xff000000u)) {
 | 
			
		||||
		x <<= 8;
 | 
			
		||||
		r -= 8;
 | 
			
		||||
	}
 | 
			
		||||
	if (!(x & 0xf0000000u)) {
 | 
			
		||||
		x <<= 4;
 | 
			
		||||
		r -= 4;
 | 
			
		||||
	}
 | 
			
		||||
	if (!(x & 0xc0000000u)) {
 | 
			
		||||
		x <<= 2;
 | 
			
		||||
		r -= 2;
 | 
			
		||||
	}
 | 
			
		||||
	if (!(x & 0x80000000u)) {
 | 
			
		||||
		x <<= 1;
 | 
			
		||||
		r -= 1;
 | 
			
		||||
	}
 | 
			
		||||
	return r;
 | 
			
		||||
    if (!x)
 | 
			
		||||
        return 0;
 | 
			
		||||
    if (!(x & 0xffff0000u)) {
 | 
			
		||||
        x <<= 16;
 | 
			
		||||
        r -= 16;
 | 
			
		||||
    }
 | 
			
		||||
    if (!(x & 0xff000000u)) {
 | 
			
		||||
        x <<= 8;
 | 
			
		||||
        r -= 8;
 | 
			
		||||
    }
 | 
			
		||||
    if (!(x & 0xf0000000u)) {
 | 
			
		||||
        x <<= 4;
 | 
			
		||||
        r -= 4;
 | 
			
		||||
    }
 | 
			
		||||
    if (!(x & 0xc0000000u)) {
 | 
			
		||||
        x <<= 2;
 | 
			
		||||
        r -= 2;
 | 
			
		||||
    }
 | 
			
		||||
    if (!(x & 0x80000000u)) {
 | 
			
		||||
        x <<= 1;
 | 
			
		||||
        r -= 1;
 | 
			
		||||
    }
 | 
			
		||||
    return r;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
 | 
			
		||||
u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr);
 | 
			
		||||
u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr);
 | 
			
		||||
u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr);
 | 
			
		||||
u32 vfp_double_normaliseroundintern(ARMul_State* state, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);
 | 
			
		||||
u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr);
 | 
			
		||||
u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr);
 | 
			
		||||
u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, vfp_double* dm, u32 fpscr);
 | 
			
		||||
 | 
			
		||||
@ -511,7 +511,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
 | 
			
		||||
    LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr);
 | 
			
		||||
    m = vfp_get_double(state, dm);
 | 
			
		||||
    if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
 | 
			
		||||
        ret |= FPSCR_C | FPSCR_V;
 | 
			
		||||
        ret |= FPSCR_CFLAG | FPSCR_VFLAG;
 | 
			
		||||
        if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 | 
			
		||||
            /*
 | 
			
		||||
             * Signalling NaN, or signalling on quiet NaN
 | 
			
		||||
@ -521,7 +521,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
 | 
			
		||||
 | 
			
		||||
    d = vfp_get_double(state, dd);
 | 
			
		||||
    if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
 | 
			
		||||
        ret |= FPSCR_C | FPSCR_V;
 | 
			
		||||
        ret |= FPSCR_CFLAG | FPSCR_VFLAG;
 | 
			
		||||
        if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 | 
			
		||||
            /*
 | 
			
		||||
             * Signalling NaN, or signalling on quiet NaN
 | 
			
		||||
@ -535,7 +535,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
 | 
			
		||||
            /*
 | 
			
		||||
             * equal
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_Z | FPSCR_C;
 | 
			
		||||
            ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
 | 
			
		||||
            //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
 | 
			
		||||
        } else if (vfp_double_packed_sign(d ^ m)) {
 | 
			
		||||
            /*
 | 
			
		||||
@ -545,22 +545,22 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
 | 
			
		||||
                /*
 | 
			
		||||
                 * d is negative, so d < m
 | 
			
		||||
                 */
 | 
			
		||||
                ret |= FPSCR_N;
 | 
			
		||||
                ret |= FPSCR_NFLAG;
 | 
			
		||||
            else
 | 
			
		||||
                /*
 | 
			
		||||
                 * d is positive, so d > m
 | 
			
		||||
                 */
 | 
			
		||||
                ret |= FPSCR_C;
 | 
			
		||||
                ret |= FPSCR_CFLAG;
 | 
			
		||||
        } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
 | 
			
		||||
            /*
 | 
			
		||||
             * d < m
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_N;
 | 
			
		||||
            ret |= FPSCR_NFLAG;
 | 
			
		||||
        } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
 | 
			
		||||
            /*
 | 
			
		||||
             * d > m
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_C;
 | 
			
		||||
            ret |= FPSCR_CFLAG;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret);
 | 
			
		||||
 | 
			
		||||
@ -419,7 +419,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
 | 
			
		||||
 | 
			
		||||
    d = vfp_get_float(state, sd);
 | 
			
		||||
    if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
 | 
			
		||||
        ret |= FPSCR_C | FPSCR_V;
 | 
			
		||||
        ret |= FPSCR_CFLAG | FPSCR_VFLAG;
 | 
			
		||||
        if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 | 
			
		||||
            /*
 | 
			
		||||
             * Signalling NaN, or signalling on quiet NaN
 | 
			
		||||
@ -428,7 +428,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
 | 
			
		||||
        ret |= FPSCR_C | FPSCR_V;
 | 
			
		||||
        ret |= FPSCR_CFLAG | FPSCR_VFLAG;
 | 
			
		||||
        if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 | 
			
		||||
            /*
 | 
			
		||||
             * Signalling NaN, or signalling on quiet NaN
 | 
			
		||||
@ -441,7 +441,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
 | 
			
		||||
            /*
 | 
			
		||||
             * equal
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_Z | FPSCR_C;
 | 
			
		||||
            ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
 | 
			
		||||
        } else if (vfp_single_packed_sign(d ^ m)) {
 | 
			
		||||
            /*
 | 
			
		||||
             * different signs
 | 
			
		||||
@ -450,22 +450,22 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
 | 
			
		||||
                /*
 | 
			
		||||
                 * d is negative, so d < m
 | 
			
		||||
                 */
 | 
			
		||||
                ret |= FPSCR_N;
 | 
			
		||||
                ret |= FPSCR_NFLAG;
 | 
			
		||||
            else
 | 
			
		||||
                /*
 | 
			
		||||
                 * d is positive, so d > m
 | 
			
		||||
                 */
 | 
			
		||||
                ret |= FPSCR_C;
 | 
			
		||||
                ret |= FPSCR_CFLAG;
 | 
			
		||||
        } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
 | 
			
		||||
            /*
 | 
			
		||||
             * d < m
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_N;
 | 
			
		||||
            ret |= FPSCR_NFLAG;
 | 
			
		||||
        } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
 | 
			
		||||
            /*
 | 
			
		||||
             * d > m
 | 
			
		||||
             */
 | 
			
		||||
            ret |= FPSCR_C;
 | 
			
		||||
            ret |= FPSCR_CFLAG;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return ret;
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user